$2 \mathrm{~kg}$ के एक गुटके को दो एक समान स्प्रिंगों से जोड़ा गया है जिनमें प्रत्येक का स्प्रिंग नियतांक 20 $\mathrm{N} / \mathrm{m}$ है। गुटका एक घर्षणरहित तल पर रखा है और स्प्रिंगों के मुक्त सिरों को दृढ़ आधारों से जोड़ा गया है (चित्र देखिए)। जब गुटके को साम्यावस्था से खिसका दिया जाता है, तब यह सरल आवर्त गति करने लगता है। दोलन का आवर्तकाल SI मात्रक में $\frac{\pi}{\sqrt{\mathrm{x}}}$ है। $\mathrm{x}$ का मान____________ है।
$5$
$4$
$3$
$2$
दिए गए आरेख में $M$ द्रव्यमान का एक पिण्ड एक क्षैतिज कमानी से बंधा हैं, जिसका दूसरा सिरा किसी दढ़ सपोर्ट से जुड़ा है। कमानी का कमानी स्थिरांक $k$ है। यह पिण्ड किसी घर्षणहीन पष्ठ पर आवर्तकाल $T$ और आयाम $A$ के साथ दोलन करता है। जब यह पिण्ड साम्यावस्था की स्थिति पर होता है (आरेख देखिए) तब कोई अन्य पिण्ड, जिसका द्रव्यमान $m$ है, इस पिण्ड के ऊपर धीरे से जोड़ दिया जाता है। अब दोलन का नया आयाम होगा।
$M_1$और $M_2$ दो द्रव्यमान $K$ नियतांक वाली किसी द्रव्यमान विहीन स्प्रिंग से चित्र में दिखाये अनुसार लटके हैं। संतुलन की अवस्था में, निकाय को प्रभावित न करके यदि $M_1$ को धीरे से हटा लिया जाये तो दोलन का आयाम होगा
$k$ बल नियतांक की एक एकसमान स्प्रिंग को $1:2$ के दो भागों में बाँटा गया है, तो छोटे व बडे़ भाग के बल नियतांकों का अनुपात है
किसी नगण्य द्रव्यमान की स्प्रिंग् से $M$ द्रव्यमान लटकाया जाता है। स्प्रिंग् को थोड़ा खींचकर छोड़ दिया जाता है ताकि द्रव्यमान $M$ दोलनकाल $T$ से सरल आवर्ती दोलन करने लगता है। यदि द्रव्यमान को $m$ से बढ़ा दिया जाये तो दोलनकाल $\frac{5}{4}T$ हो जाता है, तो $\frac{m}{M}$ का अनुपात है
समान द्रव्यमान के दो कण $A$ और $B$ दो द्रव्यमानहीन कमानियों, जिनके कमानी नियतांक क्रमशः $K _{1}$ और $K _{2}$ हैं, से निलंबित हैं। यदि दोलन करते समय अधिकतम वेग समान हैं, तो $A$ और $B$ के आयामों का अनुपात है।