એક પદાર્થ $5\, min$ માં $80 \,^oC$ થી $50 \,^oC$ સુધી ઠંડો થાય છે. તેને $60 \,^oC$ થી $30 \,^oC$ સુધી ઠંડો પાડવા માટે લાગતો સમય શોધો. પરિસરનું તાપમાન $20 \,^oC$ છે.
According to Newton's law of cooling, we have:
$-\frac{d T}{d t}=K\left(T-T_{0}\right)$
$\frac{d T}{K\left(T-T_{0}\right)}=-K d t...(i)$
Where,
Temperature of the body $=T$
Temperature of the surroundings $=T_{0}=20^{\circ} C$
$K$ is a constant
Temperature of the body falls from $80^{\circ} C$ to $50^{\circ} C$ in time, $t=5 min =300 s$
Integrating equation $(i),$ we get
$\int_{00}^{80} \frac{d T}{K\left(T-T_{0}\right)}=-\int_{0}^{300} K d t$
$\left[\log _{e}\left(T-T_{0}\right)\right]_{s_{0}}^{80}=-K[t]_{0}^{300}$
$\frac{2.3026}{K} \log _{10} \frac{80-20}{50-20}=-300$
$\frac{2.3026}{K} \log _{10} 2=-300$
$\frac{-2.3026}{300} \log _{10} 2=K\dots (ii)$
The temperature of the body falls from $60^{\circ} C$ to $30^{\circ} C$ in time $=t'$
Hence, we get:
$\frac{2.3026}{K} \log _{10} \frac{60-20}{30-20}=-t$
$\frac{-2.3026}{t} \log _{10} 4=K\dots (iii)$
Equating equations ( $i i$ ) and (iii), we get:
$\frac{-2.3026}{t} \log _{10} 4=\frac{-2.3026}{300} \log _{10} 2$
$t=300 \times 2=600 s =10 min$
Therefore, the time taken to cool the body from $60\,^{\circ} C$ to $30\,^{\circ} C$ is $10$ minutes.
એક બીકરમાં રહેલ પ્રવાહીનું t સમયે તાપમાન $\theta(t)$ છે, પરિસરનું તાપમાન $\theta_{0}$ હોય તો ન્યૂટનના શીતનના નિયમ મુજબ $\log _{e}\left(\theta-\theta_{0}\right)$ અને $t$ નો આલેખ નીચે પૈકી કેવો મળે?
સમાન દ્રવ્યના બે ગોળા $A$ અને $B$ ને ગરમ કરીને સમાન વાતાવરણમાં મૂકતાં ઠંડા પડવાના દરનો ગુણોત્તર કેટલો થાય, જો ગોળા $A$ નું દળ $B$ કરતાં ત્રણ ગણું છે.
ન્યુટનનો શીતનના નિયમ પ્રયોગશાળામાં શું શોધવા માટે ઉપયોગી છે ?
પદાર્થનું તાપમાન $60\,^oC$ થી $50\,^oC$ થતાં $10$ મિનિટ લાગે.જો વાતાવરણનું અચળ તાપમાન $25\,^oC$ હોય તો પછીની $10$ મિનિટમાં પદાર્થનું તાપમાન ....... $^oC$ થશે?
$l (x = 0$ થી $ x = l )$ લંબાઇના વાહકમાંથી ઉષ્મા પસાર થાય છે.તો તાપમાન વિરુધ્ધ અંતરનો આલેખ