A body of mass ' $m$ ' is projected with a speed ' $u$ ' making an angle of $45^{\circ}$ with the ground. The angular momentum of the body about the point of projection, at the highest point is expressed as $\frac{\sqrt{2} \mathrm{mu}^3}{\mathrm{Xg}}$. The value of ' $\mathrm{X}$ ' is
$8$
$9$
$10$
$11$
$A$ particle of mass $m$ is rotating in a plane is $a$ circular path of radius $r$, its angular momentum is $L$. The centripital force acting on the particle is :
Two particles, each of mass $m$ and speed $v$, travel in opposite directions along parallel lines separated by a distance $d$. Show that the angular momentum vector of the two particle system is the same whatever be the point about which the angular momentum is taken.
A particle is moving along a straight line with increasing speed. Its angular momentum about a fixed point on this line ............
A particle of mass $M=0.2 kg$ is initially at rest in the $x y$-plane at a point $( x =-l, y =-h)$, where $l=10 m$ and $h=1 m$. The particle is accelerated at time $t =0$ with a constant acceleration $a =10 m / s ^2$ along the positive $x$-direction. Its angular momentum and torque with respect to the origin, in SI units, are represented by $\vec{L}$ and $\vec{\tau}$, respectively. $\hat{i}, \hat{j}$ and $\hat{k}$ are unit vectors along the positive $x , y$ and $z$-directions, respectively. If $\hat{k}=\hat{i} \times \hat{j}$ then which of the following statement($s$) is(are) correct?
$(A)$ The particle arrives at the point $(x=l, y=-h)$ at time $t =2 s$.
$(B)$ $\vec{\tau}=2 \hat{ k }$ when the particle passes through the point $(x=l, y=-h)$
$(C)$ $\overrightarrow{ L }=4 \hat{ k }$ when the particle passes through the point $(x=l, y=-h)$
$(D)$ $\vec{\tau}=\hat{ k }$ when the particle passes through the point $(x=0, y=-h)$
What is the physical quantity of the time rate of the angular momentum ?