A body of mass $2\, kg$ slides down a curved track which is quadrant of a circle of radius $1$ $meter$ as shown in figure. All the surfaces are frictionless. If the body starts from rest, its speed at the bottom of the track is ............. $\mathrm{m}/ \mathrm{s}$

823-1267

  • A

    $4.43$

  • B

    $2$

  • C

    $0.5$

  • D

    $19.6$

Similar Questions

Power supplied to a particle of mass $2\, kg$ varies with time as $P = \frac{{3{t^2}}}{2}$ $watt$ . Here, $t$ is in $seconds$ . If velocity of particle at $t = 0$ is $v = 0$, the velocity of particle at time $t = 2\, s$ will be ............ $\mathrm{m}/ \mathrm{s}$

$A$ ball is dropped from height $5m$. The time after which ball stops rebounding if coefficient of restitution between ball and ground $e = 1/2$, is .................. $\mathrm{sec}$

A car is moving on a straight horizontal road with a speed $v.$ If the coefficient of friction between the tyres and the road is $\mu ,$ the shortest distance in which the car can be stopped is

Assume the aerodynamic drag force on a car is proportional to its speed. If the power output from the engine is doubled, then the maximum speed of the car.

A particle is made to move from the origin in three spells of equal distances, first along the $x-$ axis, second parallel to $y-$ axis and third parallel to $z-$ axis. One of the forces acting on it is has constant magnitude of $50\,N$ and always acts along the direction of motion. Work done by this force in the three spells of motion are equal and total work done in all the three spells is $300\,J$. The final coordinates of the particle will be