દળ $m$ ને સ્પ્રિંગના નીચલા છેડાથી બાંધેલો છે જેનો ઉપરનો છેડો જડિત છે. સ્પ્રિંગનું દળ અવગણ્ય છે. જ્યારે $m$ દળને સહેજ ખેંચવામાં આવે અને છોડવામાં આવે છે, ત્યારે તે $3$ સેકન્ડના આવર્તકાળથી દોલનો કરે છે. જ્યારે દળ $m$ માં $1\; kg$ નો વધારો થાય, તો દોલનનો આવર્તકાળ $5\; s$ થાય છે. $m$ નું મૂલ્ય $kg$ માં કેટલું હશે?
$\frac{16}{9}$
$\frac{9}{16}$
$\frac{3}{4}$
$\frac{4}{3}$
$\mathrm{m}$ દળને અવગણ્ય દળ ધરાવતી સ્પ્રિંગ સાથે લટકાવવામાં આવે છે અને આ તંત્ર $f_1$ આવૃત્તિ થી દોલનો કરે છે. જો $9 \mathrm{~m}$ ના દળને આ જ સ્પ્રિંગ પર લટકાવતા દોલનોની આવૃત્તિ $f_2$ થાય છે.______$\frac{f_1}{f_2}$ નું મૂલ્ય હશે.
આપેલ તંત્ર માટે $m$ દળના પદાર્થની આવૃત્તિ કેટલી થાય?
એક $500 \,N \,m^{-1}$ સ્પ્રિંગ અચળાંક ધરાવતી સ્પ્રિંગની સાથે $5 \,kg$ નો કૉલર (પટ્ટો) જોડાયેલ છે. તે ઘર્ષણ વગર સમક્ષિતિજ સળિયા પર સરકે છે. આ કૉલર તેના સંતુલન સ્થાનેથી $10.0\, cm$ સ્થાનાંતરિત થઈ અને મુક્ત થાય છે. આ કૉલર માટે
$(a)$ દોલનોનો આવર્તકાળ
$(b)$ મહત્તમ ઝડપ અને
$(e)$ મહત્તમ પ્રવેગની ગણતરી કરો.
આકૃતિમાં દર્શવ્યા પ્રમાણે બ્લોક $P$ અને $Q$ વચ્ચે ઘર્ષણ છે. પરંતુ $Q$ અને તળિયાની સપાટી વચ્યે ઘર્ષણ લાગતું નથી. સ્પ્રિંગની સામાન્ય સ્થિતિમાં બ્લોક $Q, P$ તે $x=0$ સ્થિતિમાં છે. હવે બ્લોક $Q$ જમણી તરફ થોડો ખેંચીને છોડવામાં આવે છે. આ સ્પ્રિંગ બ્લોક પ્રણાલી $A$ જેટલા કંપવિસ્તારથી દોલનો કરે છે. જો આ સ્થિતિ $P$ બ્લોક $Q$ પરથી સરકવા લાગે તો ક્યા સ્થાને સરકીને નીચે પડશે?
$K$ બળ અચળાંક ધરાવતી સ્પ્રિંગ પર એક પદાર્થ આકૃતિમાં દર્શાવ્યા મુજબ છે. તેની ગતિનું સમીકરણ $x(t)= A sin \omega t+ Bcos\omega t$, જ્યાં $\omega=\sqrt{\frac{K}{m}}$ છે. $t=0$ સમયે દળનું સ્થાન $x(0)$ અને વેગ $v(0)$ હોય, તો સ્થાનાંતરને $x(t)=C \cos (\omega t-\phi)$ મુજબ આપવામાં આવે છે, જ્યાં $C$ અને $\phi$ કેટલા હશે?