The variation of acceleration due to gravity $ ( g )$ with distance $(r)$ from the center of the earth is correctly represented by ... (Given $R =$ radius of earth)
Figure shows the variation of the gravitatioal acceleration $a_g$ of four planets with the radial distance $r$ from the centre ofthe planet for $r \ge $ radius of the planet. Plots $1$ and $2$ coincide for $r \ge {R_2}$ and plots $3$ and $4$ coincide for $r \ge {R_4}$ . The sequence of the planets in the descending order of their densities is
Suppose the gravitational force varies inversely as the $n^{th}$ power of distance. Then the time period of a planet in circular orbit of radius $R$ around the sun will be proportional to
The change in the value of $g$ at a height $h$ above the surface of the earth is the same as at a depth $d$ below the surface of earth. When both $d$ and $h$ are much smaller than the radius of earth, then which one of the following is correct ?
The mean radius of earth is $R$, and its angular speed on its axis is $\omega$. What will be the radius of orbit of a geostationary satellite?
A satellite of mass $m$ is at a distance $a$ from $a$ star of mass $M$. The speed of satellite is $u$. Suppose the law of universal gravity is $F = - G\frac{{Mm}}{{{r^{2.1}}}}$ instead of $F = - G\frac{{Mm}}{{{r^2}}}$, find the speed of the statellite when it is at $a$ distance $b$ from the star.