A body of mass is taken from earth surface to the height $h$ equal to twice the radius of earth $\left(R_e\right)$, the increase in potential energy will be : ( $g =$ acceleration due to gravity on the surface of Earth)
$3 mgR$
$\frac{1}{3} mgR _{ e }$
$\frac{2}{3} mgR _{ e }$
$\frac{1}{2} mgR _{ e }$
What should be the angular speed of earth, so that body lying on equator may appear weightlessness $ (g = 10\,m/{s^2},\,\,R = 6400\,km)$
The change in the value of $‘g’$ at a height $‘h’$ above the surface of the earth is the same as at a depth $‘d’$ below the surface of earth. When both $‘d’$ and $‘h’$ are much smaller than the radius of earth, then which one of the following is correct?
A body of mass $m$ is kept at a small height $h$ above the ground. If the radius of the earth is $R$ and its mass is $M$, the potential energy of the body and earth system (with $h = \infty $ being the reference position ) is
A satellite moving with velocity $v$ in a force free space collects stationary interplanetary dust at a rate of $\frac{{dM}}{{dt}} = \alpha v$ where $M$ is the mass (of satellite + dust) at that instant . The instantaneous acceleration of the satellite is
Two spherical bodies of mass $M$ and $5M$ and radii $R$ and $2R$ respectively are released in free space with initial separation between their centres equal to $12\,R$. If they attract each other due to gravitational force only, then the distance covered by the smaller body just before collision is