- Home
- Standard 11
- Physics
A bubble of radius $R$ in water of density $\rho$ is expanding uniformly at speed $v$. Given that water is incompressible, the kinetic energy of water being pushed is
zero
$2 \pi \rho R^{3} v^{2}$
$2 \pi \rho R^{3} v^{2} / 3$
$4 \pi \rho R^{3} v^{2} / 3$
Solution

$(b)$ Let bubble of radius $x$ expands and pushes water of density $\rho$ by a distance $d x$. Then, kinetic energy of water of strip $d x$ is
$d K=\frac{1}{2} d m \cdot v_{x}^{2} \Rightarrow d K=\frac{1}{2} 4 \pi x^{2} \cdot d x \cdot \rho \cdot v_{x}^{2}$
or $d K=2 \pi R^{2} \cdot \rho \cdot v_{x}^{2} \cdot d x \quad \ldots$ $(i)$
Considering laminar flow, for section $1$ and $2$ shown in figure, by equation of continuity
$A_{1} v_{1}=A_{2} v_{2} \Rightarrow 4 \pi x^{2} v_{x}=4 \pi R^{2} v$
$\Rightarrow \quad v_{x} =\frac{R^{2}}{x^{2}} \cdot v\quad \ldots$ $(ii)$
From Eqs. $(i)$ and $(ii)$, we have
$d K=2 \pi x^{2} \rho\left(\frac{R^{2}}{x^{2}} \cdot v \cdot\right)^{2} d x$
$\Rightarrow d K=2 \pi R^{4} \rho v^{2} \cdot\left(\frac{d x}{x^{2}}\right)$
So, kinetic energy of complete volume of water,
$K=\int \limits_{R}^{\infty} d K=2 \pi R^{4} \rho v^{2} \int \limits_{R}^{\infty} \frac{d x}{x^{2}}$
$\Rightarrow \quad K=2 \pi R^{4} \cdot \rho \cdot v\left[-\frac{1}{x}\right]_{R}^{\infty}$
$=2 \pi \rho R^{3} v^{2}$