A calorie is a unit of heat or energy and it equals about $4.2\; J$ where $1 \;J =1\; kg \,m ^{2} \,s ^{-2}$ Suppose we employ a system of units in which the unit of mass equals $\alpha\; kg$, the unit of length equals $\beta\; m$, the unit of time is $\gamma$ $s$. Show that a calorie has a magnitude $4.2 \;\alpha^{-1} \beta^{-2} \gamma^{2}$ in terms of the new units.

Vedclass pdf generator app on play store
Vedclass iOS app on app store
Given that,
$1$ calorie $=4.2(1\, kg )\left(1 \,m ^{2}\right)\left(1\, s ^{-2}\right)$
New unit of mass $=\alpha kg$
Hence, in terms of the new unit, $1 \,kg =\frac{1}{\alpha}=\alpha^{-1}$ In terms of the new unit of length, $1\, m =\frac{1}{\beta}=\beta^{-1}$ or $1\, m ^{2}=\beta^{-2}$
And, in terms of the new unit of time, $1\, s =\frac{1}{\gamma}=\gamma^{-1}$
$1\, s ^{2}=\gamma^{-2}$
$1 \,s ^{-2}=\gamma^{2}$
$\therefore 1$ calorie $=4.2\left(1 \alpha^{-1}\right)\left(1 \beta^{-2}\right)\left(1 \gamma^{2}\right)=4.2 \alpha^{-1} \beta^{-2} \gamma^{2}$

Similar Questions

An artificial satellite is revolving around a planet of mass $M$ and radius $R$ in a circular orbit of radius $r$. From Kepler’s third law about the period of a satellite around a common central body, square of the period of revolution $T$ is proportional to the cube of the radius of the orbit $r$. Show using dimensional analysis that $T\, = \,\frac{k}{R}\sqrt {\frac{{{r^3}}}{g}} $, where $k$ is dimensionless constant and $g$ is acceleration due to gravity.

If velocity of light $c$, Planck’s constant $h$ and gravitational constant $G$ are taken as fundamental quantities, then express time in terms of dimensions of these quantities.

The speed of light $(c)$, gravitational constant $(G)$ and planck's constant $(h)$ are taken as fundamental units in a system. The dimensions of time in this new system should be

  • [JEE MAIN 2019]

A physical quantity of the dimensions of length that can be formed out of $c, G$ and $\frac{e^2}{4\pi \varepsilon _0}$  is $[c$ is velocity of light, $G$ is the universal constant of gravitation and $e$ is charge $] $

  • [NEET 2017]

In the relation $P = \frac{\alpha }{\beta }{e^{ - \frac{{\alpha Z}}{{k\theta }}}}$ $P$ is pressure, $Z$ is the distance, $k$ is Boltzmann constant and $\theta$ is the temperature. The dimensional formula of $\beta$ will be

  • [IIT 2004]