एक सरल लोलक पर विचार कीजिए, जिसमें गोलक को एक धागे से बाँध कर लटकाया गया है और जो गुरुत्व बल के अधीन दोलन कर रहा है। मान लीजिए कि इस लोलक का दोलन काल इसकी लम्बाई $(l)$, गोलक के द्रब्यमान $(m)$ और गुर्त्वीय त्वरण $(g)$ पर निर्भर करता है। विमाओं की विधि का उपयोग करके इसके दोलन-काल के लिए सूत्र व्युत्पन्न कीजिए।
यंग के प्रत्यास्थता गुणांक (Young's modulus of elasticity) $Y$ को तीन व्युत्पन्न राशियों (derived quantities) नामतः गुरुत्वीय नियतांक $G$, प्लांक (Planck) नियतांक $h$ तथा प्रकाश की चाल $c$ के द्वारा $Y=c^\alpha h^\beta G^r$ से निरूपित किया जाता है। निम्न में से कौन सा विकल्प सही है?
यदि $a$ त्रिज्या का एक गोला $v$ चाल से $\eta$ श्यानता नियताकं के एक द्रव में चलता है, तो स्टोक के नियमानुसार (Stoke's Law) उस पर $F$ श्यानता बल लगता है, जिसे निम्न समीकरण से दिखाया गया है : $F=6 \pi \eta a v$ यदि यह द्रव एक बेलनाकार नली, जिसकी त्रिज्या $r$, लंबाई 1 , एवं दोनों सिरों पर दाबांतर $P$ है, के अंदर बह रहा है, तब जल का $t$ समय में बहा हुआ आयतन निम्न प्रकार से लिखा जा सकता है:
$\stackrel{v}{t}=k\left(\frac{p}{l}\right)^a \eta^b r^c \text {, }$
जहाँ $k$ एक विमाहीन स्थिरांक है । $a, b$ एवं $c$ के सही मान निम्नलिखित हैं:
समीकरण $P = \frac{{a - {t^2}}}{{bx}}$ में $P$ दाब, $x$ दूरी तथा $t$ समय है तब $\frac{a}{b}$ की विमा होगी