ऊष्मा या ऊर्जा का मात्रक कैलोरी है और यह लगभग $4.2\, J$ के बराबर है, जहां $1\, J =1\, kg\, m ^{2} s ^{-2}$ मान लीजिए कि हम मात्रकों की कोई ऐसी प्रणाली उपयोग करते हैं जिससे द्रव्यमान का मात्रक $\alpha\, kg$ के बराबर है, लंबाई का मात्रक $\beta m$ के बराबर है, समय का मात्रक $\gamma s$ के बराबर है । यह प्रदर्शित कीजिए कि नए मात्रकों के पदों में कैलोरी का परिमाण $4.2 \alpha^{-1} \beta^{-2} \gamma^{2}$ है ।

Vedclass pdf generator app on play store
Vedclass iOS app on app store
Given that,
$1$ calorie $=4.2(1\, kg )\left(1 \,m ^{2}\right)\left(1\, s ^{-2}\right)$
New unit of mass $=\alpha kg$
Hence, in terms of the new unit, $1 \,kg =\frac{1}{\alpha}=\alpha^{-1}$ In terms of the new unit of length, $1\, m =\frac{1}{\beta}=\beta^{-1}$ or $1\, m ^{2}=\beta^{-2}$
And, in terms of the new unit of time, $1\, s =\frac{1}{\gamma}=\gamma^{-1}$
$1\, s ^{2}=\gamma^{-2}$
$1 \,s ^{-2}=\gamma^{2}$
$\therefore 1$ calorie $=4.2\left(1 \alpha^{-1}\right)\left(1 \beta^{-2}\right)\left(1 \gamma^{2}\right)=4.2 \alpha^{-1} \beta^{-2} \gamma^{2}$

Similar Questions

एक सरल लोलक पर विचार कीजिए, जिसमें गोलक को एक धागे से बाँध कर लटकाया गया है और जो गुरुत्व बल के अधीन दोलन कर रहा है। मान लीजिए कि इस लोलक का दोलन काल इसकी लम्बाई $(l)$, गोलक के द्रब्यमान $(m)$ और गुर्त्वीय त्वरण $(g)$ पर निर्भर करता है। विमाओं की विधि का उपयोग करके इसके दोलन-काल के लिए सूत्र व्युत्पन्न कीजिए।

यंग के प्रत्यास्थता गुणांक (Young's modulus of elasticity) $Y$ को तीन व्युत्पन्न राशियों (derived quantities) नामतः गुरुत्वीय नियतांक $G$, प्लांक (Planck) नियतांक $h$ तथा प्रकाश की चाल $c$ के द्वारा $Y=c^\alpha h^\beta G^r$ से निरूपित किया जाता है। निम्न में से कौन सा विकल्प सही है?

  • [IIT 2023]

यदि $a$ त्रिज्या का एक गोला $v$ चाल से $\eta$ श्यानता नियताकं के एक द्रव में चलता है, तो स्टोक के नियमानुसार (Stoke's Law) उस पर $F$ श्यानता बल लगता है, जिसे निम्न समीकरण से दिखाया गया है : $F=6 \pi \eta a v$ यदि यह द्रव एक बेलनाकार नली, जिसकी त्रिज्या $r$, लंबाई 1 , एवं दोनों सिरों पर दाबांतर $P$ है, के अंदर बह रहा है, तब जल का $t$ समय में बहा हुआ आयतन निम्न प्रकार से लिखा जा सकता है:

$\stackrel{v}{t}=k\left(\frac{p}{l}\right)^a \eta^b r^c \text {, }$

जहाँ $k$ एक विमाहीन स्थिरांक है । $a, b$ एवं $c$ के सही मान निम्नलिखित हैं:

  • [KVPY 2015]

समीकरण $P = \frac{{a - {t^2}}}{{bx}}$ में $P$ दाब, $x$ दूरी तथा $t$ समय है तब $\frac{a}{b}$ की विमा होगी

एक बल को निम्न प्रक़ार प्रदर्शित किया गया है $I-a x^2+b t^{1 / 2}$ जसाँ $x$ - गूरी त $t$ - समय है $h^{2 / a}$ की विमाएँ हैं :

  • [JEE MAIN 2024]