A capacitor $C$ is fully charged with voltage $V _{0}$ After disconnecting the voltage source, it is connected in parallel with another uncharged capacitor of capacitance $\frac{ C }{2} .$ The energy loss in the process after the charge is distributed between the two capacitors is$.........$$CV _{0}^{2}$
$0.166$
$0.5$
$0.33$
$0.25$
A $12 \;pF$ capacitor is connected to a $50 \;V$ battery. How much electrostatic energy is stored in the capacitor?
Two insulated metallic spheres of $3\,\mu F$ and $5\,\mu F$ capacitances are charged to $300\, V$ and $500\,V$ respectively. The energy loss, when they are connected by a wire is
The energy of a charged capacitor is given by the expression ($q$= charge on the conductor and $C$ = its capacity)
The lower plate of a parallel plate capacitor is supported on a rigid rod. The upper plate is suspended from one end of a balance. The two plates are joined together by a thin wire and subsequently disconnected. The balance is then counterpoised. Now a voltage $V = 5000\, volt$ is applied between the plates. The distance between the plates is $d =5\, mm$ and the area of each plate is $A = 100 cm^2.$ Then find out the additional mass placed to maintain balance.......$g$ [All the elements other than plates are massless and nonconducting] :-
A $5\, \mu F$ capacitor is charged fully by a $220\,V$ supply. It is then disconnected from the supply and is connected in series to another uncharged $2.5\;\mu F$ capacitor. If the energy change during the charge redistribution is $\frac{ X }{100} \;J$ then value of $X$ to the nearest integer is$.....$