A capacitor $C$ is fully charged with voltage $V _{0}$ After disconnecting the voltage source, it is connected in parallel with another uncharged capacitor of capacitance $\frac{ C }{2} .$ The energy loss in the process after the charge is distributed between the two capacitors is$.........$$CV _{0}^{2}$
$0.166$
$0.5$
$0.33$
$0.25$
Two condensers of capacity $0.3\,\mu F$ and $0.6\,\mu F$ respectively are connected in series. The combination is connected across a potential of $6\,volts$. The ratio of energies stored by the condensers will be
If the plates of a parallel plate capacitor connected to a battery are moved close to each other, then
$A$. the charge stored in it, increases.
$B$. the energy stored in it, decreases.
$C$. its capacitance increases.
$D$. the ratio of charge to its potential remains the same.
$E$. the product of charge and voltage increases.
Choose the most appropriate answer from the options given below:
Two positively charged particles $X$ and $Y$ are initially far away from each other and at rest. $X$ begins to move towards $Y$ with some initial velocity. The total momentum and energy of the system are $p$ and $E$.
The electric field intensity produced by the radiation coming from a $100\, W$ bulb at a distance of $3\, m$ is $E$. The electric field intensity produced by the radiation coming from $60\, W$ at the same distance is $\sqrt{\frac{x}{5}} E$. Where the value of $x=......... .$
A capacitor $4\,\mu F$ charged to $50\, V$ is connected to another capacitor of $2\,\mu F$ charged to $100 \,V$ with plates of like charges connected together. The total energy before and after connection in multiples of $({10^{ - 2}}\,J)$ is