2. Electric Potential and Capacitance
hard

A capacitor of $10 \mu \mathrm{F}$ capacitance whose plates are separated by $10 \mathrm{~mm}$ through air and each plate has area $4 \mathrm{~cm}^2$ is now filled equally with two dielectric media of $\mathrm{K}_1=2, \mathrm{~K}_2=3$ respectively as shown in figure. If new force between the plates is $8 \mathrm{~N}$. The supply voltage is . . . .. . .V.

A

$50$

B

$80$

C

$60$

D

$30$

(JEE MAIN-2024)

Solution

$\mathrm{C}_{\mathrm{eq}}=\mathrm{C}_1+\mathrm{C}_2$

$\mathrm{C}_1=\frac{2 \epsilon_0 \mathrm{~A}}{2 \times \mathrm{d}}=10 \mu \mathrm{F}$

$\mathrm{C}_2=\frac{3 \epsilon_0 \mathrm{~A}}{2 \mathrm{~d}}=15 \mu \mathrm{F}$

$\mathrm{C}_{\mathrm{eq}}=25 \mu \mathrm{F}$

Now the charge on

$\mathrm{C}_1=10 \mathrm{~V} \mu \mathrm{c}$

$\mathrm{C}_2=1.5 \mathrm{~V} \mu \mathrm{C}.$

Now force between the plates $\left[\mathrm{F}=\frac{\mathrm{Q}^2}{2 \mathrm{~A} \epsilon_0}\right]$

$\frac{100 \mathrm{~V}^2 \times 10^{-12}}{2 \times 2 \times 10^{-4} \epsilon_0}+\frac{225 \mathrm{~V}^2 \times 10^{-12}}{2 \times 2 \times 10^{-4} \times \epsilon_0}=8$

$325 \mathrm{~V}^2=8 \times 4 \times 10^{-4} \times 8.85$

$\mathrm{~V}^2-\frac{32 \times 8.85 \times 10^{-4}}{325}$

$\therefore \mathrm{V}=\sqrt{\frac{283.2 \times 10^{-4}}{325}}$

$\mathrm{~V}=0.93 \times 10^{-2}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.