Dielectric constant for metal is
Zero
Infinite
$1$
Greater than $1$
A parallel plate capacitor has a capacity $C$. The separation between the plates is doubled and a dielectric medium is introduced between the plates. If the capacity now becomes $2C$, the dielectric constant of the medium is
The plates of a parallel plate capacitor are charged up to $100 \,volt$ . A $2 \,mm$ thick plate is inserted between the plates, then to maintain the same potential difference, the distance between the capacitor plates is increased by $1.6\, mm$. The dielectric constant of the plate is :-
A parallel plate capacitor is to be designed with a voltage rating $1\; k\,V ,$ using a material of dielectric constant $3$ and dielectric strength about $10^{7}\; V\,m ^{-1} .$ (Dielectric strength is the maximum electric field a material can tolerate without breakdown, i.e., without starting to conduct electricity through partial ionisation.) For safety, we should like the field never to exceed, say $10 \%$ of the dielectric strength. What minimum area (in $cm^2$) of the plates is required to have a capacitance of $50\; pF ?$
A parallel plate air capacitor has a capacitance of $100\,\mu F$. The plates are at a distance $d$ apart. If a slab of thickness $t(t \le d)$and dielectric constant $5$ is introduced between the parallel plates, then the capacitance will be.......$\mu F$
A parallel plate capacitor with air between the plate has a capacitance of $15 pF$. The separation between the plate becomes twice and the space between them is filled with a medium of dielectric constant $3.5.$ Then the capacitance becomes $\frac{ x }{4}\,pF$.The value of $x$ is $............$