एक आवेश Q को एक घन के किनारे पर रखा जाता है। इसकी प्रत्येक फलक से निकलने वाला वैधुत फ्लक्स होगा :
$\frac{Q}{{2{\varepsilon _0}}}$
$\frac{Q}{{6{\varepsilon _0}}}$
$\frac{Q}{{8{\varepsilon _0}}}$
$\frac{Q}{{{\varepsilon _0}}}$
चित्रानुसार, एक वृत्तीय तार (wire) परिनालिका को घेराबंद करता है परिनालिका में चुम्बकीय फ्लक्स एक नियत दर से इस पृष्ठ के तल से बाहर की ओर बढ़ रहा है. वृत्ताकार तार के परितः दक्षिणावर्त विद्युत वाहक बल $\varepsilon_0$ है. परिभाषा के अनुसार, वोल्टामीटर, दिए गए दो बिन्दुओं के मध्य वोल्टता के अंतर को निम्न समीकरण $V _{ b }- V _{ s }=\int_a^b \bar{E} \cdot d \bar{s}$ के अनुसार मापता है. मान लीजिये कि $a$ और $b$ एक-दूसरे के अत्यणु निकट हैं. तो पथ 1 के अनुरूप $V _{ b }- V _{ a }$ और पथ 2 के अनुरूप $V _{ a }- V _{ b }$ के मान क्रमशः क्या हैं?
$\alpha $ भुजा वाले एक घन के केन्द्र पर एक विद्युत आवेश $q$ रखा गया है। इसके फलकों में से एक फलक पर वैद्युत अभिवाह (electric flux) का मान होगा
$(a)$ स्थिरवैध्यूत क्षेत्र रेखा एक संतत वक्र होती है अर्थात कोई क्षेत्र रेखा एकाएक नह्है टूट सकती। क्यों?
$(b)$ स्पष्ट कीजिए कि दो क्षेत्र रेखाएँ कभी भी एक-दूसरे का प्रतिच्छेदन क्यों नहीं करती?
मुक्त आकाश के एक क्षेत्र में विद्युत क्षेत्र दिया जाता हैं $\overrightarrow{ E }= E _{ o } \hat{i}+2 E _{ o } \hat{j}$ जहाँ $E _{0}=100 \;N / C$ । $Y - Z$ तल के समान्तर $0.02 \;m$ त्रिज्या के वृत्तीय पृष्ठ से गुजरने पर इस विद्युत क्षेत्र का फ्लक्स लगभग हैं :
$x-y$ तल में एक विद्युत बल रेखा समीकरण ${x^2} + {y^2} = 1$ द्वारा दी गयी है। इस तल में बिन्दु $x = 1,\;y = 0$ पर प्रारम्भ में विराम अवस्था से एक इकाई धनावेशित कण