किसी स्थान पर विद्युत क्षेत्र त्रैज्यीय बाहर की ओर है जिसका परिमाण $E = A{\gamma _0}$ है। ${\gamma _0}$ त्रिज्या के गोले के अन्दर आवेश होगा
$\frac{1}{{4\pi {\varepsilon _0}}}A\gamma _0^3$
$4\pi {\varepsilon _0}A\gamma _0^3$
$\frac{{4\pi {\varepsilon _0}A}}{{{\gamma _0}}}$
$\frac{1}{{4\pi {\varepsilon _0}}}\frac{A}{{\gamma _0^3}}$
$R$ त्रिज्या की वृत्तीय चकती पृष्ठीय आवेश घनत्व $\sigma( r )=\sigma_0\left(1-\frac{ r }{ R }\right)$, ग्रहण किये हुये है, जहाँ $\sigma_0$ एक नियतांक है तथा $r$ चकती के केन्द्र से दूरी है। एक बड़ी गोलीय सतह जो आवेशित चकती को पूर्णत: परिबद्ध करती है, से गुजरने वाला विद्युत फ्लक्स $\phi_0$ है। $\frac{ R }{4}$ त्रिज्या वाली तथा चकती के साथ संकेन्द्रित एक अन्य गोलीय सतह से गुजरने वाला विद्युत फ्लक्स $\phi$ है। तब अनुपात $\frac{\varphi_0}{\varphi}$ का मान. . . . . है।
मूलबिन्दु पर अवस्थित $2 \times 10^{-9}\, m ^{3}$ के किसी वार्धिक आयतन में परिबद्ध कुल आवेश $......\,nC$ होगा, यदि इसके क्षेत्र का विधुत फ्लक्स घनत्व $D = e ^{- x } \sin y \hat{ i }- e ^{- x } \cos y \hat{ j }+2 z \hat{ k } C / m ^{2}$ पाया जाता है।
एक $R$ त्रिज्या वाले आवेशित कोश पर कुल आवेश $Q$ है। एक लम्बाई $h$ और त्रिज्या $r$ वाले बेलनाकार बंद पृष्ठ, जिसका केन्द्र कोश के केन्द्र पर ही है, से गुजरने वाला विधुत फ्लक्स (flux) $\Phi$ है। यहाँ बेलन का केन्द्र इसके अक्ष पर एक बिन्दु है जो कि ऊपरी और निचली सतह से समान दूरी पर है। निम्नलिखित कथनों में से कौनसा (से) सही है(हैं) ? [मुक्त आकाश (free space) की विधुत शीलता $\epsilon_0$ है]
$(1)$ यदि $h >2 R$ और $r > R$ तब $\Phi=\frac{ Q }{\epsilon_0}$
$(2)$ यदि $h <\frac{8 R }{5}$ और $r =\frac{3 R }{5}$ तब $\Phi=0$
$(3)$ यदि $h >2 R$ और $r =\frac{4 R }{5}$ तब $\Phi=\frac{ Q }{5 \epsilon_0}$
$(4)$ यदि $h >2 R$ और $r =\frac{3 R }{5}$ तब $\Phi=\frac{ Q }{5 \epsilon_0}$
गॉस का नियम लागू नहीं होता यदि
एकसमान विद्युत क्षेत्र $E =3 \times 10^{3} \hat{ 1 } N / C$ पर विचार कीजिए
$(a)$ इस क्षेत्र का $10\, cm$ भुजा के वर्ग के उस पाश्व से जिसका तल $y z$ तल के समांतर है, गुजरने वाला फ्लक्स क्या है?
$(b)$ इसी वर्ग से गुजरने वाला फ्लक्स कितना है यद् इसके तल का अभिलंब $x$ -अक्ष से $60^{\circ}$ का कोण बनाता है?