­x­-अक्ष पर प्रत्येक बिन्दुओं $x = {x_0},\,x = 3{x_0},\,x = 5{x_0}$.....$\infty$ पर आवेश q रखा है एवं बिन्दुओं $x = 2{x_0},\,x = 4{x_0},x = 6{x_0}$, …$\infty$ पर दूसरा आवेश -q रखा है, यहाँ ${x_0}$ धनात्मक नियतांक है। यदि किसी आवेश $Q$ से $r$ दूरी पर विभव का मान $Q/(4\pi {\varepsilon _0}r)$ हो तो उपरोक्त आवेशों के निकाय के कारण मूल बिन्दु पर विभव होगा

  • [IIT 1998]
  • A

    0

  • B

    $\frac{q}{{8\pi {\varepsilon _0}{x_0}\ln 2}}$

  • C

    $\infty $

  • D

    $\frac{{q\ln 2}}{{4\pi {\varepsilon _0}{x_0}}}$

Similar Questions

$\sqrt 2 $ मी. भुजा वाले एक वर्ग के शीर्षों पर $ + 10\,\mu C,\; + 5\,\mu C,\; - 3\,\mu C$ तथा $ + 8\,\mu C$ आवेश रखे गये हैं। वर्ग के केन्द्र पर विभव होगा

दो बड़ी ऊर्ध्वाधर (vertocal) व संमातर धातु प्लेटों के बीच $1 \ cm$ की दूरी है। वे $X$ विभंवातर के $D C$ स्त्रोत से जुड़ी हैं। दोनों प्लेंटो के मध्य एक प्रोटॉन को स्थिर- अवस्था में छोड़ा जाता है। छोड़े जाने के तुरंत बाद प्रोटॉन ऊर्ध्व से $45^{\circ}$ कोण बनाता हुआ गति करता है। तब $X$ का मान लगभग है :

  • [IIT 2012]

किसी क्षेत्र में मूल बिन्दु के चारों ओर विद्युत क्षेत्र एक समान है एवं $x$ - अक्ष के अनुदिश कार्यरत् है। मूल बिन्दु को केन्द्र मान कर एक छोटा सा वृत्त खींचा जाता है जो कि अक्षों को बिन्दुओं $A, B, C$ तथा $D$ पर काटता है। यदि इन बिन्दुओं के निर्देशांक क्रमश: $(a, 0), (0, a), (-a, 0), (0, -a)$ हैं तब किसी बिन्दु पर विभव न्यूनतम होगा

$r$ तथा $R$ त्रिज्या $( > r)$ के दो संकेन्द्रीय एवं खोखले गोलों पर आवेश $Q$ इस प्रकार से वितरित है कि इनके पृष्ठीय आवेश घनत्व समान हैं। इनके उभयनिष्ठ केन्द्र पर विभव होगा

  • [IIT 1981]

$9 \times 10^{-13} \mathrm{~cm}$ त्रिज्या के एक परमाणु नाभिक $(\mathrm{z}=50)$ के पृष्ठ पर वैद्युत विभव . . . . . . . .  $\times 10^6 \hat{V}$ है।

  • [JEE MAIN 2024]