A charged ball $B$ hangs from a silk thread $S$, which makes an angle $\theta $ with a large charged conducting sheet $P$, as shown in the figure. The surface charge density $\sigma $ of the sheet is proportional to
$\sin \theta $
$\tan \theta $
$\cos \theta $
$\cot \theta $
Two charges $\pm 10\; \mu C$ are placed $5.0\; mm$ apart. Determine the electric field at $(a)$ a point $P$ on the axis of the dipole $15 cm$ away from its centre $O$ on the side of the positive charge, as shown in Figure $(a),$ and $(b)$ a point $Q , 15\; cm$ away from $O$ on a line passing through $O$ and normal to the axis of the dipole, as shown in Figure.
What is the magnitude of a point charge due to which the electric field $30\,cm$ away has the magnitude $2\,newton/coulomb$ $[1/4\pi {\varepsilon _0} = 9 \times {10^9}\,N{m^2}/{C^2}]$
A thin conducting ring of radius $R$ is given a charge $+Q.$ The electric field at the centre $O$ of the ring due to the charge on the part $AKB$ of the ring is $E.$ The electric field at the centre due to the charge on the part $ACDB$ of the ring is
Two point charges $Q_1, Q_2$ are fixed at $x = 0$ and $x = a$. Assuming that field strength is positive in the direction coinciding with the positive direction of $x$, then, which following option will be correct ?
A charged particle is suspended in equilibrium in a uniform vertical electric field of intensity $20000\, V/m$. If mass of the particle is $9.6 \times {10^{ - 16}}\,kg$, the charge on it and excess number of electrons on the particle are respectively $(g = 10\,m/{s^2})$