Let the latus ractum of the parabola $y ^{2}=4 x$ be the common chord to the circles $C _{1}$ and $C _{2}$ each of them having radius $2 \sqrt{5}$. Then, the distance between the centres of the circles $C _{1}$ and $C _{2}$ is

  • [JEE MAIN 2020]
  • A

    $8$

  • B

    $4 \sqrt{5}$

  • C

    $12$

  • D

    $8 \sqrt{5}$

Similar Questions

A circle $S$ passes through the point $(0,1)$ and is orthogonal to the circles $(x-1)^2+y^2=16$ and $x^2+y^2=1$. Then

$(A)$ radius of $S$ is $8$

$(B)$ radius of $S$ is $7$

$(C)$ centre of $S$ is $(-7,1)$

$(D)$ centre of $S$ is $(-8,1)$

  • [IIT 2014]

Radius of circle touching $y-$axis at point $P(0,2)$ and circle $x^2 + y^2 = 16$ internally-

The coordinates of the radical centre of the three circles ${x^2} + {y^2} - 4x - 2y + 6 = 0,{x^2} + {y^2} - 2x - 4y -1 = 0,$${x^2} + {y^2} - 12x + 2y + 30 = 0$ are

If the circles ${x^2} + {y^2} - 9 = 0$ and ${x^2} + {y^2} + 2ax + 2y + 1 = 0$ touch each other, then $a =$

If the circles ${x^2} + {y^2} + 2ax + cy + a = 0$ and ${x^2} + {y^2} - 3ax + dy - 1 = 0$ intersect in two distinct points $P$ and $Q$ then the line $5x + by - a = 0$ passes through $P$ and $Q$ for

  • [AIEEE 2005]