The circles $x^2 + y^2 + 2x -2y + 1 = 0$ and $x^2 + y^2 -2x -2y + 1 = 0$ touch each other :-
externally at $(0, 1)$
internally at $(0, 1)$
externally at $(1, 0)$
internally at $(1, 0)$
The equation of the circle which touches the circle ${x^2} + {y^2} - 6x + 6y + 17 = 0$ externally and to which the lines ${x^2} - 3xy - 3x + 9y = 0$ are normals, is
A circle passes through the origin and has its centre on $y = x$. If it cuts ${x^2} + {y^2} - 4x - 6y + 10 = 0$ orthogonally, then the equation of the circle is
If the two circles $2{x^2} + 2{y^2} - 3x + 6y + k = 0$ and ${x^2} + {y^2} - 4x + 10y + 16 = 0$ cut orthogonally, then the value of $k$ is
Consider a circle $C_1: x^2+y^2-4 x-2 y=\alpha-5$.Let its mirror image in the line $y=2 x+1$ be another circle $C _2: 5 x ^2+5 y ^2-10 fx -10 gy +36=0$.Let $r$ be the radius of $C _2$. Then $\alpha+ r$ is equal to $......$.
Two circles ${S_1} = {x^2} + {y^2} + 2{g_1}x + 2{f_1}y + {c_1} = 0$ and ${S_2} = {x^2} + {y^2} + 2{g_2}x + 2{f_2}y + {c_2} = 0$ cut each other orthogonally, then