A circle $S$ passes through the point $(0,1)$ and is orthogonal to the circles $(x-1)^2+y^2=16$ and $x^2+y^2=1$. Then

$(A)$ radius of $S$ is $8$

$(B)$ radius of $S$ is $7$

$(C)$ centre of $S$ is $(-7,1)$

$(D)$ centre of $S$ is $(-8,1)$

  • [IIT 2014]
  • A

    $(B,D)$

  • B

    $(B,C)$

  • C

    $(A,C)$

  • D

    $(A,D)$

Similar Questions

Circles ${(x + a)^2} + {(y + b)^2} = {a^2}$ and ${(x + \alpha )^2}$ $ + {(y + \beta )^2} = $ ${\beta ^2}$ cut orthogonally, if

If two circles ${(x - 1)^2} + {(y - 3)^2} = {r^2}$ and ${x^2} + {y^2} - 8x + 2y + 8 = 0$ intersect in two distinct points, then

  • [AIEEE 2003]

The locus of centre of a circle passing through $(a, b)$ and cuts orthogonally to circle ${x^2} + {y^2} = {p^2}$, is

  • [IIT 1988]

The intercept on the line $y = x$ by the circle ${x^2} + {y^2} - 2x = 0$ is $AB$ . Equation of the circle with $AB$ as a diameter is

  • [IIT 1996]

Give the number of common tangents to circle ${x^2} + {y^2} + 2x + 8y - 23 = 0$ and ${x^2} + {y^2} - 4x - 10y + 9 = 0$