The radical centre of the circles ${x^2} + {y^2} + 4x + 6y = 19,{x^2} + {y^2} = 9$ and ${x^2} + {y^2} - 2x - 2y = 5$ will be

  • A

    $(1, 1)$

  • B

    $(-1, 1)$

  • C

    $(1, -1)$

  • D

    $(0, 1)$

Similar Questions

The number of common tangents to two circles ${x^2} + {y^2} = 4$ and ${x^2} - {y^2} - 8x + 12 = 0$ is

The number of common tangents, to the circles $x^2+y^2-18 x-15 y+131=0$ and $x^2+y^2-6 x-6 y-7=0$, is :

  • [JEE MAIN 2023]

If one of the diameters of the circle $x^{2}+y^{2}-2 \sqrt{2} x$ $-6 \sqrt{2} y+14=0$ is a chord of the circle $(x-2 \sqrt{2})^{2}$ $+(y-2 \sqrt{2})^{2}=r^{2}$, then the value of $r^{2}$ is equal to

  • [JEE MAIN 2022]

Two circle ${x^2} + {y^2} = ax$ and ${x^2} + {y^2} = {c^2}$ touch each other if 

  • [AIEEE 2011]

The tangent to the circle $C_1 : x^2 + y^2 - 2x- 1\, = 0$ at the point $(2, 1)$ cuts off a chord of length $4$ from a circle $C_2$ whose centre is $(3, - 2)$. The radius of $C_2$ is

  • [JEE MAIN 2018]