Locus of the points from which perpendicular tangent can be drawn to the circle ${x^2} + {y^2} = {a^2}$, is

  • A

    A circle passing through origin

  • B

    A circle of radius $2a$

  • C

    A concentric circle of radius $a\sqrt 2 $

  • D

    None of these

Similar Questions

For the given circles ${x^2} + {y^2} - 6x - 2y + 1 = 0$ and ${x^2} + {y^2} + 2x - 8y + 13 = 0$, which of the following is true

A variable line $ax + by + c = 0$, where $a, b, c$ are in $A.P.$, is normal to a circle $(x - \alpha)^2 + (y - \beta)^2 = \gamma$ , which is orthogonal to circle $x^2 + y^2- 4x- 4y-1 = 0$. The value of $\alpha + \beta + \gamma$ is equal to

The equation of a circle passing through points of intersection of the circles ${x^2} + {y^2} + 13x - 3y = 0$ and $2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$ and point $(1, 1)$ is

  • [IIT 1983]

The number of direct common tangents to the circles $x^2 + y^2 = 4$ and $x^2 + y^2 -8x -8y + 7 = 0$ , is

The radical centre of three circles described on the three sides of a triangle as diameter is