A circle is drawn with $y- $ axis as a tangent and its centre at the point which is the reflection of $(3, 4)$ in the line $y = x$. The equation of the circle is
$x^2 + y^2 - 6x - 8y + 16 = 0$
$x^2 + y^2 - 8x - 6y + 16 = 0$
$x^2 + y^2 - 8x - 6y + 9 = 0$
$x^2 + y^2 - 6x - 8y + 9 = 0$
The equations of the tangents to the circle ${x^2} + {y^2} = {a^2}$ parallel to the line $\sqrt 3 x + y + 3 = 0$ are
Given the circles ${x^2} + {y^2} - 4x - 5 = 0$and ${x^2} + {y^2} + 6x - 2y + 6 = 0$. Let $P$ be a point $(\alpha ,\beta )$such that the tangents from P to both the circles are equal, then
Let the lines $y+2 x=\sqrt{11}+7 \sqrt{7}$ and $2 y + x =2 \sqrt{11}+6 \sqrt{7}$ be normal to a circle $C:(x-h)^{2}+(y-k)^{2}=r^{2}$. If the line $\sqrt{11} y -3 x =\frac{5 \sqrt{77}}{3}+11$ is tangent to the circle $C$, then the value of $(5 h-8 k)^{2}+5 r^{2}$ is equal to.......
Tangents are drawn from the point $(4, 3)$ to the circle ${x^2} + {y^2} = 9$. The area of the triangle formed by them and the line joining their points of contact is
Tangents are drawn from $(4, 4) $ to the circle $x^2 + y^2 - 2x - 2y - 7 = 0$ to meet the circle at $A$ and $B$. The length of the chord $AB $ is