Gujarati
10-1.Circle and System of Circles
medium

If the tangent to the circle ${x^2} + {y^2} = {r^2}$ at the point $(a, b)$ meets the coordinate axes at the point $A$ and $B$, and $O$ is the origin, then the area of the triangle $OAB$ is

A

$\frac{{{r^4}}}{{2ab}}$

B

$\frac{{{r^4}}}{{ab}}$

C

$\frac{{{r^2}}}{{2ab}}$

D

$\frac{{{r^2}}}{{ab}}$

Solution

(a) Obviously $r = \sqrt {{a^2} + {b^2}} $

Equation of $AB$ is $ax + by = {r^2}$ or $\frac{x}{{{r^2}/a}} + \frac{y}{{{r^2}/b}} = 1$

$ \Rightarrow OA = \frac{{{r^2}}}{a}$ and $OB = \frac{{{r^2}}}{b}$

Hence the area is $\frac{1}{2}.\frac{{{r^2}}}{a}.\frac{{{r^2}}}{b} $

$= \frac{1}{2}\frac{{{r^4}}}{{ab}}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.