Gujarati
Hindi
10-1.Circle and System of Circles
normal

Tangents are drawn from $(4, 4) $ to the circle $x^2 + y^2 - 2x - 2y - 7 = 0$ to meet the circle at $A$ and $B$. The length of the chord $AB $ is

A

$2\sqrt{3}$

B

$3\sqrt{2}$

C

$2\sqrt{6}$ 

D

$6\sqrt{2}$

Solution

length of $C.O.C. = \frac{{2RL}}{{\sqrt {{R^2} + {L^2}} }}$

equation of circle $x^2 + y^2 – 2x – 2y – 7 = 0$

equation of $COC = 4x + 4y – (x + 4) – (y + 4) – 7 = 0 = 3x + 3y – 15 = 0 $

radius $= 3$ perpendicular from $(1, 1)$ =$\left| {\,\frac{{6 – 15}}{{\sqrt {18} }}\,} \right|$ =$\frac{9}{{\sqrt {18} }}$ =$\frac{9}{{3\sqrt 2 }}$ =$\frac{3}{{\sqrt 2 }}$

$\therefore$  length $\frac{{AB}}{2}$ = $\sqrt {{r^2} – {{\left( {\frac{3}{{\sqrt 2 }}} \right)}^2}} $ = $\frac{3}{{\sqrt 2 }}$

$\therefore$  $AB = 3\sqrt{2}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.