A circle with centre $(2,3)$ and radius $4$ intersects the line $x + y =3$ at the points $P$ and $Q$. If the tangents at $P$ and $Q$ intersect at the point $S(\alpha, \beta)$, then $4 \alpha-7 \beta$ is equal to $........$.
$11$
$10$
$80$
$90$
From any point on the circle ${x^2} + {y^2} = {a^2}$ tangents are drawn to the circle ${x^2} + {y^2} = {a^2}{\sin ^2}\alpha $, the angle between them is
The equation of the chord of the circle ${x^2} + {y^2} = {a^2}$ having $({x_1},{y_1})$ as its mid-point is
The area of the triangle formed by the positive $x$-axis and the normal and the tangent to the circle $x^2 + y^2 = 4$ at $(1, \sqrt 3 )$ is
Equation of the tangent to the circle, at the point $(1 , -1)$ whose centre is the point of intersection of the straight lines $x - y = 1$ and $2x + y= 3$ is
If the centre of a circle is $(2, 3)$ and a tangent is $x + y = 1$, then the equation of this circle is