6.System of Particles and Rotational Motion
hard

$M$ દળ અને $R$ ત્રિજ્યા ધરાવતી તકતીની કોણીય ઝડપ $\omega_{1}$ છે. બીજી $\frac{ R }{2}$ ત્રિજ્યા અને $M$ દળ ધરાવતી તકતી તેના પર મુક્તા નવી કોણીય ઝડપ $\omega_{2}$ છે.શરૂઆતની ઊર્જાનો વ્યય થાય તો $p=.......$

A

$25$

B

$27$

C

$20$

D

$15$

(JEE MAIN-2020)

Solution

Let moment of inertia of bigger disc is $I =\frac{ MR ^{2}}{2}$

$\Rightarrow$ $MOI$ of small disc $I_{2}=\frac{M\left(\frac{R}{2}\right)^{2}}{2}=\frac{I}{4}$

by angular momentum conservation

$I \omega_{1}+\frac{ I }{4}( D )= I \omega_{2}+\frac{ I }{4} \omega_{2} \Rightarrow \omega_{2}=\frac{4 \omega_{1}}{5}$

initial kinetic energy $K _{1}=\frac{1}{2} I \omega_{1}^{2}$

final kinetic energy $K _{2}$

$=\frac{1}{2}\left( I +\frac{ I }{4}\right)\left(\frac{4 \omega_{1}}{5}\right)^{2}=\frac{1}{2} I \omega_{1}^{2}\left(\frac{4}{5}\right)$

$P \%=\frac{ K _{1}- K _{2}}{ K _{1}} \times 100 \%=\frac{1-4 / 5}{1} \times 100=20 \%$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.