- Home
- Standard 11
- Physics
6.System of Particles and Rotational Motion
medium
A uniform ring of radius $R$ is moving on a horizontal surface with speed $v$, then climbs up a ramp of inclination $30^{\circ}$ to a height $h$. There is no slipping in the entire motion. Then, $h$ is
A
$v^{2} / 2 g$
B
$v^{2} / g$
C
$3 v^{2} / 2 g$
D
$2 v^{2} / g$
(KVPY-2016)
Solution

$(b)$ As ring is rolling without any slippage, Total initial kinetic energy $=$ Total final potential energy at height $h$
$\Rightarrow$ Kinctic energy of translation $+$ Kinctic energy of rotation = Potential energy of ring at height $h$
$\Rightarrow \quad \frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2}=m g h$
For ring, $I=m R^{2}$ and $v=R \omega$
$\therefore \frac{1}{2} m v^{2}+\frac{1}{2} m R^{2} \times \frac{v^{2}}{R^{2}} =m g h$
$\Rightarrow m v^{2} =m g h$
$\Rightarrow h =\frac{v^{2}}{g}$
Standard 11
Physics