3-2.Motion in Plane
hard

A circular table is rotating with an angular velocity of $\omega \mathrm{rad} / \mathrm{s}$ about its axis (see figure). There is a smooth groove along a radial direction on the table. A steel ball is gently placed at a distance of $1 \mathrm{~m}$ on the groove. All the surface are smooth. If the radius of the table is $3 \mathrm{~m}$, the radial velocity of the ball w.r.t. the table at the time ball leaves the table is $x \sqrt{2} \omega \mathrm{m} / \mathrm{s}$, where the value of $x$ is............

A

$1$

B

$2$

C

$5$

D

$7$

(JEE MAIN-2024)

Solution

$a_c=\omega^2 x$

$\frac{v d v}{d x}=\omega^2 x$

$\int_0^v v d v=\int_1^3 \omega^2 x d x$

$\frac{v^2}{2}=\omega^2\left[\frac{x^2}{2}\right]$

$\frac{v^2}{2}=\frac{\omega^2}{2}\left[3^2-1^2\right]$

$v=2 \sqrt{2} \omega$

$x=2$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.