A committee of $11$ members is to be formed from $8$ males and $5$ females. If $m$ is the number of ways the committee is formed with at least $6$ males and $n$ is the number of ways the committee is formed with at least $3$ females, then
$n = m \,-\, 8$
$m + n = 68$
$m = n = 78$
$m = n = 68$
How many words, with or without meaning, each of $2$ vowels and $3$ consonants can be formed from the letters of the word $\mathrm{DAUGHTER}$ ?
$\mathop \sum \limits_{0 \le i < j \le n} i\left( \begin{array}{l}
n\\
j
\end{array} \right)$ is equal to
In a shop there are five types of ice-creams available. A child buys six ice-creams.
Statement $-1 :$ The number of different ways the child can buy the six ice-creams is $^{10}C_5.$
Statement $-2 :$ The number of different ways the child can buy the six ice-creams is equal to the number of different ways of arranging $6 \,A's$ and $4 \,B's$ in a row.
The sum $\sum\limits_{i = 0}^m {\left( {\begin{array}{*{20}{c}}{10}\\i\end{array}} \right)} \,\left( {\begin{array}{*{20}{c}}{20}\\{m - i}\end{array}} \right)\,,$ $\left( {{\rm{where}}\,\left( {\begin{array}{*{20}{c}}p\\q\end{array}} \right)\, = 0\,{\rm{if}}\,p < q} \right)$, is maximum when m is
A boy needs to select five courses from $12$ available courses, out of which $5$ courses are language courses. If he can choose at most two language courses, then the number of ways he can choose five courses is