$8$ पुरुषों तथा $5$ महिलाओं में से $11$ सदस्यों की एक कमेटी बनाई जानी है। यदि कम से कम $6$ पुरुषों वाली कमेटी बनाने के $m$ तरीके हैं तथा कम से कम $3$ महिलाओं वाली कमेटी बनाने के $n$ तरीके हैं, तो
$n = m \,-\, 8$
$m + n = 68$
$m = n = 78$
$m = n = 68$
छः विभिन्न उपन्यासों और $3$ विभिन्न शब्दकोशों से $4$ उपन्यास और $1$ शब्दकोश चुन कर एक अल्मारी में एक पंक्ति में इस प्रकार व्यवस्थित किया जाना है कि शब्दकोश सदा बीच में रहे। तब ऐसे विन्यासों (arrangements) की संख्या है :
$6$ पुस्तकों में से एक या अधिक पुस्तकों को कितने प्रकार से चुना जा सकता है
छ: ‘$+$’ व चार ‘$-$’ चिन्हों को एक सरल रेखा में कुल कितने प्रकार से रखा जा सकता है यदि दो ‘$-$’ कभी भी साथ न आयें
यदि $2 \times {}^n{C_5} = 9\,\, \times \,\,{}^{n - 2}{C_5}$ हो, तो $n$ का मान होगा
$5$ एकसमान गेंदों को $10$ एकसमान बॉक्सों में कितने प्रकार से रखा जा सकता है, ताकि किसी भी बॉक्स में एक से अधिक गेंद न हो