Gujarati
10-2.Transmission of Heat
hard

एक छड़ की $25$ सेमी लम्बाई ताँबे की एवं $10$ सेमी निकिल एवं $15$ सेमी लम्बाई एल्युमीनियम की बनी है। प्रत्येक एक-दूसरे से पूर्णत: ऊष्मीय संतुलन में हैं। ताँबे की छड़ का एक सिरा $100^\circ C$ तथा एल्युमीनियम का बाह्य सिरा $0^\circ C$ पर है। पूर्ण $50$ सेमी लम्बी छड़ को एक पट्टे से ढका गया है, जिससे उनके पृष्ठों से ऊष्मा हानि नहीं होती है। $K$(ताम्बा) $= 0.92;$ ${K}$(एलुमिनियम) $=0.5$; ${K}$(निकिल) $= 0.14$ $CGS$ मात्रक हैं, तो $Cu - Ni$ और $Ni - Al$ सन्धियों पर क्रमश: ताप होगा

A

${23.33^o}C$ और $A$

B

${83.33^o}C$ और ${20^o}C$

C

${50^o}C$ और ${30^o}C$

D

${30^o}C$ और ${50^o}C$

Solution

यदि ${K_{Ni}} = K \Rightarrow {K_{Al}} = 3K$ एवं ${K_{Cu}} = 6K.$

चूँकि सभी छड़ें श्रेणीक्रम में हैं, अत:

${\left( {\frac{Q}{t}} \right)_{Combination}} = {\left( {\frac{Q}{t}} \right)_{Cu}} = {\left( {\frac{Q}{t}} \right)_{Al}} = {\left( {\frac{Q}{t}} \right)_{Ni}}$

एवं $\frac{3}{{{K_{eq}}}} = \frac{1}{{{K_{Cu}}}} + \frac{1}{{{K_{Al}}}} + \frac{1}{{{K_{Ni}}}} = \frac{1}{{6K}} + \frac{1}{{3K}} + \frac{1}{K} = \frac{9}{{6K}}$

$\Rightarrow {K_{eq}} = 2K$

अत: यदि ${\left( {\frac{Q}{t}} \right)_{Combination}} = {\left( {\frac{Q}{t}} \right)_{Cu}}$

$\Rightarrow \frac{{{K_{eq}}\,A(100 – 0)}}{{{l_{Combination}}}} = \frac{{{K_{Cu}}A(100 – {\theta _1})}}{{{l_{Cu}}}}$

$\Rightarrow \frac{{2K\,A\,(100 – 0)}}{{(25 + 10 + 15)}} = \frac{{6K\,A\,(100 – {\theta _1})}}{{25}}$ $\Rightarrow $ ${\theta _1} = 83.33^\circ C$

यदि ${\left( {\frac{Q}{t}} \right)_{Combination}} = {\left( {\frac{Q}{t}} \right)_{Al}}$

 $\Rightarrow \frac{{2K\,A(100 – 0)}}{{50}} = \frac{{3K\,A({\theta _2} – 0)}}{{15}}$

$\Rightarrow {\theta _2} = {20^o}C$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.