- Home
- Standard 11
- Physics
एक पात्र में $1 kg$ जल भरा हुआ है, इसे सूर्य के प्रकाश में रखा जाता है, जिसके कारण जल परिवेश की तुलना में गर्म हो जाता है। सूर्य के प्रकाश के कारण प्राप्त की गई प्रति इकाई क्षेत्रफल प्रति इकाई समय औसत ऊर्जा $700 Wm ^{-2}$ है तथा इसे $0.05 m ^2$ के प्रभावी क्षेत्रफल पर जल द्वारा अवशोषित किया जाता है। माना कि जल से परिवेश की ओर ऊष्मा हानि न्यूटन के शीतलन के नियम द्वारा संचालित होती है, लम्बे समय के बाद जल तथा परिवेश के ताप में अन्तर $\left({ }^{\circ} C\right.$ में ). . . . . . . होगा। (पात्र के प्रभाव को नगण्य मानें तथा न्यूटन के शीतलन के नियम के लिए नियतांक $=0.001 s ^{-1}$ लें, जल की ऊष्मा धारिता $\left.=4200 J kg ^{-1} K ^{-1}\right)$
$8.20$
$8.25$
$8.30$
$8.33$
Solution
$\frac{ dQ }{ dt }=\sigma e A \left( T ^4- T _0^4\right) $. . . . . $(i)$
$\left.\frac{d Q}{A d t}=e \sigma\left( T _0+\Delta T \right)^4- T _0^4\right)=\sigma T _0^4\left[\left(1+\frac{\Delta T }{ T _0}\right)^4-1\right]$
$=e \sigma T _0^4\left[\left(1+4 \frac{\Delta T }{ T _0}\right)-1\right]$
$\frac{ dQ }{ Adt }=\sigma e T _0^3 \cdot 4 \Delta T$ $. . . . .(ii)$
Now from equ. $(i)$
$ms \frac{ dT }{ dt }=\sigma e T \left( T ^4- T _0^4\right)$
$\frac{ dT }{ dt }=\frac{\sigma e A }{ ms }\left[\left( T _0+\Delta T \right)^4- T _0^4\right]$
$=\frac{\sigma e e }{ ms } T _0^4 \times\left[\left(1+\frac{\Delta T }{ T _0}\right)^4-1\right]$
$\frac{ dT }{ dt }=\frac{\sigma e A }{ ms } T _0^4-4 \Delta T$
$\frac{ dT }{ dt }=e \Delta T ;\left( K =\frac{4 \sigma e A T_0^s}{ ms }\right)$
$\Rightarrow 4 \sigma e A T_0^3=\frac{ K }{ A }( ms )$
from equ. $(1)$
$\frac{d Q}{A d t}=e \sigma I _0^3 \cdot 4 \Delta T$
$700=( K / A )( ms ) \Delta T$
$\therefore \Delta T =\frac{700 \times 5 \times 10^{-2}}{10^{-5} \times 4200}=\frac{50}{6}=\frac{25}{3}$
$\Delta T =8.33$