Let $A$ and $B$ be two events such that the probability that exactly one of them occurs is $\frac{2}{5}$ and the probability that $A$ or $B$ occurs is $\frac{1}{2}$ then the probability of both of them occur together is

  • [JEE MAIN 2020]
  • A

    $0.02$

  • B

    $0.01$

  • C

    $0.20$

  • D

    $0.10$

Similar Questions

One card is drawn from a pack of $52$ cards. The probability that it is a queen or heart is

If $P\,({A_1} \cup {A_2}) = 1 - P(A_1^c)\,P(A_2^c)$ where $c$ stands for complement, then the events ${A_1}$ and ${A_2}$ are

If $\mathrm{A}$ and $\mathrm{B}$ are two events such that $\mathrm{P}(\mathrm{A})=\frac{1}{4}, \mathrm{P}(\mathrm{B})=\frac{1}{2}$ and $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{8}$ find $\mathrm{P}$ $($ not $\mathrm{A}$ and not $\mathrm{B})$

If $A, B, C$ are three events associated with a random experiment, prove that

$P ( A \cup B \cup C ) $ $= P ( A )+ P ( B )+ P ( C )- $ $P ( A \cap B )- P ( A \cap C ) $ $- P ( B \cap C )+ $ $P ( A \cap B \cap C )$

Two persons $A$ and $B$ throw a (fair)die (six-faced cube with faces numbered from $1$ to $6$ ) alternately, starting with $A$. The first person to get an outcome different from the previous one by the opponent wins. The probability that $B$ wins is

  • [KVPY 2014]