Let $E$ and $F$ be two independent events. The probability that both $E$ and $F$ happens is $\frac{1}{{12}}$ and the probability that neither $E$ nor $F$ happens is $\frac{1}{2},$ then
$P\,(E) = \frac{1}{3},\,\,P\,(F) = \frac{1}{4}$
$P\,(E) = \frac{1}{2},\,\,P\,(F) = \frac{1}{6}$
$P\,(E) = \frac{1}{6},\,\,P\,(F) = \frac{1}{2}$
None of these
Let $A$ and $B$ are two independent events. The probability that both $A$ and $B$ occur together is $1/6$ and the probability that neither of them occurs is $1/3$. The probability of occurrence of $A$ is
A die is thrown. Let $A$ be the event that the number obtained is greater than $3.$ Let $B$ be the event that the number obtained is less than $5.$ Then $P\left( {A \cup B} \right)$ is
If $P\,(A) = 0.4,\,\,P\,(B) = x,\,\,P\,(A \cup B) = 0.7$ and the events $A$ and $B$ are independent, then $x =$
If $P(A) = 2/3$, $P(B) = 1/2$ and ${\rm{ }}P(A \cup B) = 5/6$ then events $A$ and $B$ are
An experiment has $10$ equally likely outcomes. Let $\mathrm{A}$ and $\mathrm{B}$ be two non-empty events of the experiment. If $\mathrm{A}$ consists of $4$ outcomes, the number of outcomes that $B$ must have so that $A$ and $B$ are independent, is