If the odds against an event be $2 : 3$, then the probability of its occurrence is
$\frac{1}{5}$
$\frac{2}{5}$
$\frac{3}{5}$
$1$
One card is drawn randomly from a pack of $52$ cards, then the probability that it is a king or spade is
In a class of $60$ students, $30$ opted for $NCC$ , $32$ opted for $NSS$ and $24$ opted for both $NCC$ and $NSS$. If one of these students is selected at random, find the probability that The student opted for $NCC$ or $NSS$.
If $\mathrm{A}$ and $\mathrm{B}$ are two events such that $\mathrm{P}(\mathrm{A})=\frac{1}{4}, \mathrm{P}(\mathrm{B})=\frac{1}{2}$ and $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{8}$ find $\mathrm{P}$ $($ not $\mathrm{A}$ and not $\mathrm{B})$
An electronic assembly consists of two subsystems, say, $A$ and $B$. From previous testing procedures, the following probabilities are assumed to be known :
$\mathrm{P}$ $( A$ fails $)=0.2$
$P(B$ fails alone $)=0.15$
$P(A$ and $ B $ fail $)=0.15$
Evaluate the following probabilities $\mathrm{P}(\mathrm{A}$ fails alone $)$
The probability that at least one of the events $A$ and $B$ occurs is $3/5$. If $A$ and $B$ occur simultaneously with probability $1/5$, then $P(A') + P(B')$ is