A die marked $1,\,2,\,3$ in red and $4,\,5,\,6$ in green is tossed. Let $A$ be the event, $'$ the number is even,$'$ and $B$ be the event, 'the number is red'. Are $A$ and $B$ independent?
When a die is thrown, the sample space ( $S$ ) is
$\mathrm{S}=\{1,2,3,4,5,6\}$
Let $A:$ the number is even $=\{2,4,6\}$
$\Rightarrow P(A)=\frac{3}{6}=\frac{1}{2}$
$B:$ the number is red $=\{1,2,3\}$
$\Rightarrow P(B)=\frac{3}{6}=\frac{1}{2}$
$\therefore $ $A \cap B=\{2\}$
$P(A B)=P(A \cap B)=\frac{1}{6}$
$P(A) P(B)=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4} \neq \frac{1}{6}$
$\Rightarrow $ $P(A) \cdot P(B) \neq P(A B)$
Therefore, $A$ bad $B$ are not independent.
One card is drawn from a pack of $52$ cards. The probability that it is a queen or heart is
Given two independent events $A$ and $B$ such that $P(A) $ $=0.3, \,P(B)=0.6$ Find $P(A$ and $B)$.
A die is loaded in such a way that each odd number is twice as likely to occur as each even number. If $E$ is the event that a number greater than or equal to $4$ occurs on a single toss of the die then $P(E)$ is equal to
Consider three sets $E_1=\{1,2,3\}, F_1=\{1,3,4\}$ and $G_1=\{2,3,4,5\}$. Two elements are chosen at random, without replacement, from the set $E _1$, and let $S _1$ denote the set of these chosen elements.
Let $E_2=E_1-S_1$ and $F_2=F_1 \cup S_1$. Now two elements are chosen at random, without replacement, from the set $F_2$ and let $S_2$ denote the set of these chosen elements.
Let $G _2= G _1 \cup S _2$. Finally, two elements are chosen at random, without replacement, from the set $G _2$ and let $S _3$ denote the set of these chosen elements.
Let $E_3=E_2 \cup S_3$. Given that $E_1=E_3$, let $p$ be the conditional probability of the event $S_1=\{1,2\}$. Then the value of $p$ is
In two events $P(A \cup B) = 5/6$, $P({A^c}) = 5/6$, $P(B) = 2/3,$ then $A$ and $B$ are