A die marked $1,\,2,\,3$ in red and $4,\,5,\,6$ in green is tossed. Let $A$ be the event, $'$ the number is even,$'$ and $B$ be the event, 'the number is red'. Are $A$ and $B$ independent?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

When a die is thrown, the sample space ( $S$ ) is

$\mathrm{S}=\{1,2,3,4,5,6\}$

Let $A:$ the number is even $=\{2,4,6\}$

$\Rightarrow P(A)=\frac{3}{6}=\frac{1}{2}$

$B:$ the number is red $=\{1,2,3\}$

$\Rightarrow P(B)=\frac{3}{6}=\frac{1}{2}$

$\therefore $ $A \cap B=\{2\}$

$P(A B)=P(A \cap B)=\frac{1}{6}$

$P(A) P(B)=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4} \neq \frac{1}{6}$

$\Rightarrow $  $P(A) \cdot P(B) \neq P(A B)$

Therefore, $A$ bad $B$ are not independent.

Similar Questions

A card is drawn from a pack of cards. Find the probability that the card will be a queen or a heart

$A$ and $B$ are events such that $P(A)=0.42$,  $P(B)=0.48$ and $P(A$ and $B)=0.16 .$ Determine $P (A$ or $B).$

$A, B, C$ are any three events. If $P (S)$ denotes the probability of $S$ happening then $P\,(A \cap (B \cup C)) = $

If $A$ and $B$ are two independent events such that $P\,(A) = 0.40,\,\,P\,(B) = 0.50.$ Find $P$ (neither $A$ nor $B$)

Let $A$ and $B$ be two events such that $P\,(A) = 0.3$ and $P\,(A \cup B) = 0.8$. If $A$ and $B$ are independent events, then $P(B) = $

  • [IIT 1990]