An integer is chosen at random from the integers $\{1,2,3, \ldots \ldots . .50\}$. The probability that the chosen integer is a multiple of atleast one of $4,6$ and $7$ is

  • [JEE MAIN 2024]
  • A

    $\frac{8}{25}$

  • B

     $\frac{21}{50}$

  • C

    $\frac{9}{50}$

  • D

     $\frac{14}{25}$

Similar Questions

The probabilities of three mutually exclusive events are $\frac{2}{3} ,  \frac{1}{4}$ and $\frac{1}{6}$. The statement is

$A$ and $B$ are events such that $P(A)=0.42$,  $P(B)=0.48$ and $P(A$ and $B)=0.16 .$ Determine $P ($ not $A ).$

If $A$ and $B$ are arbitrary events, then

Let two fair six-faced dice $A$ and $B$ be thrown simultaneously. If  $E_1$ is the event that die $A$ shows up four, $E_2 $ is the event that die $B$ shows up two and $E_3$ is the event that the sum of numbers on both dice is odd, then which of the following statements is NOT true $?$

  • [JEE MAIN 2016]

Fill in the blanks in following table :

$P(A)$ $P(B)$ $P(A \cap B)$ $P (A \cup B)$
$0.5$ $0.35$ .........  $0.7$