An integer is chosen at random from the integers $\{1,2,3, \ldots \ldots . .50\}$. The probability that the chosen integer is a multiple of atleast one of $4,6$ and $7$ is
$\frac{8}{25}$
$\frac{21}{50}$
$\frac{9}{50}$
$\frac{14}{25}$
The probabilities of three mutually exclusive events are $\frac{2}{3} , \frac{1}{4}$ and $\frac{1}{6}$. The statement is
$A$ and $B$ are events such that $P(A)=0.42$, $P(B)=0.48$ and $P(A$ and $B)=0.16 .$ Determine $P ($ not $A ).$
If $A$ and $B$ are arbitrary events, then
Let two fair six-faced dice $A$ and $B$ be thrown simultaneously. If $E_1$ is the event that die $A$ shows up four, $E_2 $ is the event that die $B$ shows up two and $E_3$ is the event that the sum of numbers on both dice is odd, then which of the following statements is NOT true $?$
Fill in the blanks in following table :
$P(A)$ | $P(B)$ | $P(A \cap B)$ | $P (A \cup B)$ |
$0.5$ | $0.35$ | ......... | $0.7$ |