एक पासे पर $1,2,3$ लाल रंग से और $4,5,6$ हरे रंग से लिखे गए हैं। इस पासे को उछाला गया। मान लें $A$ घटना 'संख्या सम है' और $B$ घटना 'संख्या लाल रंग से लिखी गई है', को निरूपित करते हैं। क्या $A$ और $B$ स्वतंत्र हैं?
When a die is thrown, the sample space ( $S$ ) is
$\mathrm{S}=\{1,2,3,4,5,6\}$
Let $A:$ the number is even $=\{2,4,6\}$
$\Rightarrow P(A)=\frac{3}{6}=\frac{1}{2}$
$B:$ the number is red $=\{1,2,3\}$
$\Rightarrow P(B)=\frac{3}{6}=\frac{1}{2}$
$\therefore $ $A \cap B=\{2\}$
$P(A B)=P(A \cap B)=\frac{1}{6}$
$P(A) P(B)=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4} \neq \frac{1}{6}$
$\Rightarrow $ $P(A) \cdot P(B) \neq P(A B)$
Therefore, $A$ bad $B$ are not independent.
एक ताश की गड्डी से एक पत्ता निकाला जाता है, उसके बेगम या पान का पत्ता होने की प्रायिकता है
एक शहर में $20\%$ लोग अंगे्रजी समाचार पत्र पढ़ते हैं, $40\%$ हिन्दी समाचार पत्र पढ़ते हैं एवं $5\%$ दोनों अखबार पढ़ते हैं, तो अखबार न पढ़ने वालों का प्रतिशत है
मान लें $E$ तथा $F$ दो घटनाएँ इस प्रकार हैं कि $P ( E )=\frac{3}{5}, P ( F )=\frac{3}{10}$ और $P ( E \cap F )=\frac{1}{5}$ तब क्या $E$ तथा $F$ स्वतंत्र हैं?
$12$ टिकट जिन पर $1, 2, 3......12$ अंकित है। एक टिकट यदृच्छया निकाला जाता है तो संख्या को $2$ या $3$ का गुणज होने की प्रायिकता है
एक न्याय्य सिक्का और एक अभिनत पासे को उछाला गया। मान लें $A$ घटना 'सिक्के पर चित प्रकट होता है' और $B$ घटना 'पासे पर संख्या $3$ प्रकट होती है' को निरूपित करते हैं। निरीक्षण कीजिए कि घटनाएँ $A$ और $B$ स्वतंत्र हैं या नहीं?