Given $P(A)=\frac{3}{5}$ and $P(B)=\frac{1}{5}$. Find $P(A $  or  $B),$ if $A$ and $B$ are mutually exclusive events.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Here, $P ( A )=\frac{3}{5} $,  $P ( B )=\frac{1}{5}$

For mutually exclusive events $A$ and $B,$

$P ( A $ or $B )= P ( A )+ P ( B )$

$P ( A $ or $B )=\frac{3}{5}+\frac{1}{5}=\frac{4}{5}$

Similar Questions

A bag contains $9$ discs of which $4$ are red, $3$ are blue and $2$ are yellow. The discs are similar in shape and size. A disc is drawn at random from the bag. Calculate the probability that it will be either red or blue.

The odds against a certain event is $5 : 2$ and the odds in favour of another event is $6 : 5$. If both the events are independent, then the probability that at least one of the events will happen is

Suppose that $A, B, C$ are events such that $P\,(A) = P\,(B) = P\,(C) = \frac{1}{4},\,P\,(AB) = P\,(CB) = 0,\,P\,(AC) = \frac{1}{8},$ then $P\,(A + B) = $

Let $A$ and $B$ be independent events with $P(A)=0.3$ and $P(B)=0.4$. Find  $P(A \cap B)$

Two balls are drawn at random with replacement from a box containing $10$ black and $8$ red balls. Find the probability that One of them is black and other is red.