Given $P(A)=\frac{3}{5}$ and $P(B)=\frac{1}{5}$. Find $P(A $  or  $B),$ if $A$ and $B$ are mutually exclusive events.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Here, $P ( A )=\frac{3}{5} $,  $P ( B )=\frac{1}{5}$

For mutually exclusive events $A$ and $B,$

$P ( A $ or $B )= P ( A )+ P ( B )$

$P ( A $ or $B )=\frac{3}{5}+\frac{1}{5}=\frac{4}{5}$

Similar Questions

Prove that if $E$ and $F$ are independent events, then so are the events $\mathrm{E}$ and $\mathrm{F}^{\prime}$.

Let $A$,$B$ and $C$ be three events such that $P\left( {A \cap \bar B \cap \bar C} \right) = 0.6$, $P\left( A \right) = 0.8$ and $P\left( {\bar A \cap B \cap C} \right) = 0.1$, then the value of $P$(atleast two among $A$,$B$ and $C$ ) equals

Two students Anil and Ashima appeared in an examination. The probability that Anil will qualify the examination is $0.05$ and that Ashima will qualify the examination is $0.10 .$ The probability that both will qualify the examination is $0.02 .$ Find the probability that Only one of them will qualify the examination.

If $A, B, C$ are three events associated with a random experiment, prove that

$P ( A \cup B \cup C ) $ $= P ( A )+ P ( B )+ P ( C )- $ $P ( A \cap B )- P ( A \cap C ) $ $- P ( B \cap C )+ $ $P ( A \cap B \cap C )$

A bag contains $9$ discs of which $4$ are red, $3$ are blue and $2$ are yellow. The discs are similar in shape and size. A disc is drawn at random from the bag. Calculate the probability that it will be either red or blue.