$l$ લંબાઇ અને $r$ ત્રિજયાવાળી નળીમાંથી $\eta $ શ્યાનતાગુણાંક ધરાવતું પ્રવાહી વહે છે.નળીના બંને છેડેના દબાણનો તફાવત $P$ છે.તેમાંથી એકમ સમયમાં $V$ જેટલા કદનું પ્રવાહી બહાર આવે છે તો ....
$V = \frac{{\pi p{r^4}}}{{8\eta l}}$
$V = \frac{{\pi \eta l}}{{8p{r^4}}}$
$V = \frac{{8p\eta l}}{{\pi {r^4}}}$
$V = \frac{{\pi p\eta }}{{8l{r^4}}}$
સૂચિ $-I$ અને સૂચિ $-II$ મેળવો.
સૂચિ $-I$ | સૂચિ $-II$ |
$(A)$ કોણીય વેગમાન | $(I)$ $\left[ ML ^2 T ^{-2}\right]$ |
$(B)$ ટોર્ક | $(II)$ $\left[ ML ^{-2} T ^{-2}\right]$ |
$(C)$ તણાવ | $(III)$ $\left[ ML ^2 T ^{-1}\right]$ |
$(D)$ દબાણ પ્રચલન | $(IV)$ $\left[ ML ^{-1} T ^{-2}\right]$ |
નીચે આપેલા વિકલ્પોમાંથી સાચો વિકલ્પ પસંદ કરો.
જો ભૌતિક રાશિ ત્રણ રાશિઓ પર આધાર રાખે છે, અને તેમાંના બે પારિમાણિક રીતે સમાન હોય છે, નો આ સૂત્ર પરિમાણોની પદ્ધતિ દ્વારા સાધિત નથી. આ વિધાન કેવું છે?
દોલનો કરતી દોરીની આવૃત્તિ $\nu = \frac{p}{{2l}}{\left[ {\frac{F}{m}} \right]^{1/2}}$ છે,જયાં $p$ દોરીમાં ગાળાની સંખ્યા અને $l$ લંબાઇ છે.તો $m$ નું પારિમાણીક સૂત્ર શું થાય?