પરિમાણની સુસંગતતા (સમાંગતા)નો નિયમ કોને કહે છે અને પારિમાણિક વિશ્લેષણની દૃષ્ટિએ ભૌતિક સમીકરણની સુસંગતતા ચકાસો.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

ભૌતિક રાશિઓના પરિમાણ સમાન હોય તો જ તેમનો સરવાળો અથવા બાદબાકી થઈ શકે. આ નિયમને પરિમાણની સુસંગતતાંનો નિયમ કહે છે.

આ નિયમનો ઉપયોગ સમીકરણની યથાર્થતા (સત્યતા) ચકાસવા ખૂબ જ ઉપયોગી છે. પારિમાણિક સૂત્રો સમાન હોય તો જ આપેલ ભૌતિક સમીકરણ સાયું કહેવાય અન્યથા ખોટ્રું હોય. પરિમાણિક સુસંગતતા કોઈ પણ સમીકરણ સાયું જ છે તેવી બાંહેધરી આપતું નથી. પરિમાણરહિત અને વિધેયો માટે તે અનિશ્ચિત છે.

ધારો કે ભૌતિક સમીકરણ,

$$x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}$$

અહીં, $x$ એ પદાર્થ વડે $t$ સમયમાં કપાયેલ અંતર છે.

$x_{0}$ એ પદાર્થની ગતિની શરૂઆત્તનું સ્થાન છે.

$v_{0}$ એ પ્રારંભિક વેગ છે અને $a$ એ પ્રવેગ છે.

સમીકરણની બંને બાજુના પરિમાણો લખતાં,

$[x]=\left[x_{0}\right]+\left[v_{0} t\right]+\left[\frac{1}{2} a t^{2}\right]$

$[\mathrm{L}]=[\mathrm{L}]+\left[\mathrm{LT}^{-1}\right][\mathrm{T}]+\left[\mathrm{LT}^{-2}\right]\left[\mathrm{T}^{2}\right]$

$\quad=[\mathrm{L}]+[\mathrm{L}]+[\mathrm{L}]$

આમ, ડાબી બાજુના પરિમાણ $=$ જમણી બાજુના દરેક પદના પરિમાણ હોવાથી આપેલું સમીકરણ પારિમાણિક દ્રષ્ટિએ સાચું છે. પારિમાણિક સુસંગતતાની ચકાસણી એકમોની સુસંગતતાથી વધારે કે ઓછું કંઈ જણાવતું નથી. આનો ફાયદો એ છે કે કોઈ એકમના ગુણકો કે સહગુણકો વિશેની ચિંતા કરવાની કોઈ જરૂર નથી.

જે કોઈ સમીકરણ સત્યતાની ચકાસણીમાં અસફળ થાય તો તે ખોટું સાબિત થાય પણ જો પારિમાણિક દ્રષ્ટિએ સરળ હોય, તો વાસ્તવિક રીતે સાચું ન પણ હોઈ શકે પરંતુ પારિમાણિક દ્રષ્ટિ વિસંગત સમીકરણ હંમેશાં ખોટું જ હોય.

Similar Questions

$M$ દળ અને $L$ બાજુવાળા એક અતિર્દઢ ચોસલા $A$ ને બીજા કોઈ સમાન પરિમાણ અને ઓછા ર્દઢતાઅંક $\eta $ વાળા ચોસલા $B$ પર ર્દઢતાથી એવી રીતે જોડેલું છે કે જેથી $A$ નું નીચલું પૃષ્ઠ એ $B$ ના ઉપરવાળા પૃષ્ઠને સંપૂર્ણ રીતે ઢાંકે છે.  $B$ નું નીચલું પૃષ્ઠ સમક્ષિતિજ સમતલ પર ર્દઢતા થી મૂકેલું છે. $A$ ની કોઈ બાજુ પર સૂક્ષ્મ બળ $F$ પૂરું પાડવામાં આવે છે. બળ આપ્યા પછી ચોસલું $A$ સૂક્ષ્મ દોલનો શરૂ કરે છે. તેનો આવર્તકાળ કેટલો હશે?

  • [IIT 1992]

જો ઝડપ $(V)$, પ્રવેગ $(A)$ અને બળ $(F)$ ને મૂળભૂત એકમો તરીકે લેવામાં આવે, તો યંગ મોડ્યુલસનું પરિમાણ શું થશે?

  • [JEE MAIN 2019]

આપેલ સમીકરણ પરિમાણિક દૃષ્ટિએ સાચું છે કે નહિ તે ચકાસો. $\frac{1}{2} m v^{2}=m g h$ જ્યાં $m$ પદાર્થનું દળ, $v$ તેનો વેગ, $g$ ગુરુત્વપ્રવેગ અને $h$ ઊંચાઈ છે. 

દોલનો કરતી દોરીની આવૃત્તિ $\nu = \frac{p}{{2l}}{\left[ {\frac{F}{m}} \right]^{1/2}}$ છે,જયાં $p$ દોરીમાં ગાળાની સંખ્યા અને $l$ લંબાઇ છે.તો $m$ નું પારિમાણીક સૂત્ર શું થાય?

નીચેનામાંથી કયા સંબંધની મદદથી પરિમાણનું પૃથ્થકરણ કરી શકાય છે?