$r$ त्रिज्या एवं $l$ लम्बाई की एक नली जिसके सिरे पर दाबान्तर $p$ है, से $\eta $ श्यानता का द्रव बह रहा है, तब प्रति सैकण्ड बहने वाले द्रव के आयतन $V$ के लिये विमीय रुप के संगत सम्बन्ध है
$V = \frac{{\pi p{r^4}}}{{8\eta l}}$
$V = \frac{{\pi \eta l}}{{8p{r^4}}}$
$V = \frac{{8p\eta l}}{{\pi {r^4}}}$
$V = \frac{{\pi p\eta }}{{8l{r^4}}}$
यदि ऊर्जा $(E)$, वेग $(v)$ तथा समय $(T)$ को मूल राशियाँ माना जाये तो पृष्ठ तनाव की विमा होंगी
सूची $I$ का सूची $II$ से मिलान करें।
सूची $I$ | सूची $II$ |
$A$. स्प्रिंग नियतांक | $I$.$\left(\mathrm{T}^{-1}\right)$ |
$B$. कोणीय चाल | $II$.$\left(\mathrm{MT}^{-2}\right)$ |
$C$. कोणीय संवेग | $III$.$\left(\mathrm{ML}^2\right)$ |
$D$.जड़त्वाघूर्ण | $IV$. $\left(\mathrm{ML}^2 \mathrm{~T}^{-1}\right)$ |
नीचे दिए गए विकल्पों में से सही उत्तर चुनें:
किसी निकाय की एन्ट्रॉपी इस प्रकार दी गयी है :
${S}=\alpha^{2} \beta \ln \left[\frac{\mu {kR}}{J \beta^{2}}+3\right]$
यहाँ $\alpha$ तथा $\beta$ नियतांक है। $\mu, J , k$ और $R$ क्रमशः मोलों की संख्या, ऊष्मा का यांत्रिक तुल्यांक, बोल्ट्मान स्थिरांक और गैस स्थिरांक हैं।
[${S}=\frac{{dQ}}{{T}}$ लीजिए ]
निम्नलिखित में से गलत विकल्प चुनिए।
ऊर्जा घनत्व का व्यंजक निम्नवत है $u =\frac{\alpha}{\beta} \sin \left(\frac{\alpha x }{ kt }\right)$, जहाँ $\alpha$ एवं $\beta$ स्थिरांक हैं, $x$ विस्थापन है, $k$ वोल्टजमैन स्थिरांक है एवं $t$ तापमान है। $\beta$ की विमाऐं होंगी :
सूची $I$ को सूची $II$ से सुमेलित कीजिए और सूचियों के नीचे दिये गये कोड का प्रयोग करके सही उत्तर चुनिये :
सूची $I$ | सूची $II$ |
$P.$बोल्ट्समान नियतांक | $1.$ $\left[ ML ^2 T ^{-1}\right]$ |
$Q.$ श्यानता गुणांक | $2.$ $\left[ ML ^{-1} T ^{-1}\right]$ |
$R.$ प्लांक नियतांक | $3.$ $\left[ MLT ^{-3} K ^{-1}\right]$ |
$S.$ ऊष्माता चालक | $4.$ $\left[ ML ^2 T ^{-2} K ^{-1}\right]$ |
Codes: $ \quad \quad P \quad Q \quad R \quad S $