$r$ त्रिज्या एवं $l$ लम्बाई की एक नली जिसके सिरे पर दाबान्तर $p$ है, से $\eta $ श्यानता का द्रव बह रहा है, तब प्रति सैकण्ड बहने वाले द्रव के आयतन $V$ के लिये विमीय रुप के संगत सम्बन्ध है
$V = \frac{{\pi p{r^4}}}{{8\eta l}}$
$V = \frac{{\pi \eta l}}{{8p{r^4}}}$
$V = \frac{{8p\eta l}}{{\pi {r^4}}}$
$V = \frac{{\pi p\eta }}{{8l{r^4}}}$
कभी-कभी मात्रकों की एक पद्धति का निर्माण करना सुविधाजनक होता है ताकि सभी राशियों को केवल एक भौतिक राशि के पदों में व्यक्त किया जा सके। इस प्रकार की पद्धति में, विभिन्न राशियों की विमाओं को राशि $X$ के पदों में निम्नानुसार दिया गया है: $[$ स्थिति $]=\left[ X ^{ \alpha }\right]$; [चाल $]=\left[ X ^\beta\right]$; [त्वरण $]=\left[ X ^{ p }\right]$; [रेखीय संवेग $]=\left[ X ^{ q }\right] ;[$ बल $]=\left[ X ^{ R }\right]$ । तब
$(A)$ $\alpha+ p =2 \beta$
$(B)$ $p + q - r =\beta$
$(C)$ $p - q + r =\alpha$
$(D)$ $p+q+r=\beta$
किसी वियुक्त निकाय में किसी गैस के अणुओं द्वारा किया गया कार्य $W =\alpha \beta^{2} e ^{-\frac{x^{2}}{\alpha kT }}$ द्वारा निरूपित किया गया है, यहाँ $x$ विस्थापन, $k$-बोल्ट्ज़मान नियतांक तथा $T$ ताप है। $\alpha$ और $\beta$ स्थिरांक हैं। $\beta$ की विमा होंगी।
दिये गये सम्बन्ध $y = a\cos (\omega t - kx)$ में $k$ का विमीय सूत्र है
मार्टियन पद्धति में बल $(F)$, त्वरण $(A)$ और समय $(T)$ को मूल भौतिक राशि के रुप में उपयोग करते हैं। लम्बाई की विमायें मार्टियन पद्धति में होंगी