A dimensionless quantity is constructed in terms of electronic charge $e$, permittivity of free space $\varepsilon_0$, Planck's constant $h$, and speed of light $c$. If the dimensionless quantity is written as $e^\alpha \varepsilon_0^\beta h^7 c^5$ and $n$ is a non-zero integer, then $(\alpha, \beta, \gamma, \delta)$ is given by

  • [IIT 2024]
  • A

    $(2 n,-n,-n,-n)$

  • B

    $(n,-n,-2 n,-n)$

  • C

    $(n,-n,-n,-2 n)$

  • D

    $(2 n,-n,-2 n,-2 n)$

Similar Questions

Consider two physical quantities A and B related to each other as $E=\frac{B-x^2}{A t}$ where $E, x$ and $t$ have dimensions of energy, length and time respectively. The dimension of $A B$ is

  • [JEE MAIN 2024]

Frequency is the function of density $(\rho )$, length $(a)$ and surface tension $(T)$. Then its value is

If ${E}, {L}, {m}$ and ${G}$ denote the quantities as energy, angular momentum, mass and constant of gravitation respectively, then the dimensions of ${P}$ in the formula ${P}={EL}^{2} {m}^{-5} {G}^{-2}$ are

  • [JEE MAIN 2021]

Which of the following quantities has a unit but dimensionless?

Given that $\int {{e^{ax}}\left. {dx} \right|}  = {a^m}{e^{ax}} + C$, then which statement is incorrect (Dimension of $x =  L^1$) ?