एक विमारहित राशि को इलेक्ट्रॉनिक आवेश $e$, मुक्त आकाश की विद्युतशीलता (permittivity) $\varepsilon_0$, प्लांक स्थिरांक $h$ तथा प्रकाश की चाल $c$ से व्यक्त करते हैं। यदि इस विमारहित राशि को $e^\alpha \varepsilon_0^\beta h^\gamma c^\delta$ से निर्दिष्ट किया जाता है तथा $n$ एक अशून्य पूर्णांक है तो $(\alpha, \beta, \gamma, \delta)$ का मान होगा,

  • [IIT 2024]
  • A

    $(2 n,-n,-n,-n)$

  • B

    $(n,-n,-2 n,-n)$

  • C

    $(n,-n,-n,-2 n)$

  • D

    $(2 n,-n,-2 n,-2 n)$

Similar Questions

यदि बल $( F )$, वेग $( v )$ तथा समय $( T )$ को मूल मात्रक मान लिया जायेतो, द्रव्यमान की विमायें होंगी

  • [AIPMT 2014]

किसी निकाय की एन्ट्रॉपी इस प्रकार दी गयी है :

${S}=\alpha^{2} \beta \ln \left[\frac{\mu {kR}}{J \beta^{2}}+3\right]$

यहाँ $\alpha$ तथा $\beta$ नियतांक है। $\mu, J , k$ और $R$ क्रमशः मोलों की संख्या, ऊष्मा का यांत्रिक तुल्यांक, बोल्ट्मान स्थिरांक और गैस स्थिरांक हैं।

[${S}=\frac{{dQ}}{{T}}$ लीजिए ]

निम्नलिखित में से गलत विकल्प चुनिए।

  • [JEE MAIN 2021]

यदि एक साईकिल चालक वृत्ताकार पथ पर गति करते समय ऊध्र्वाधर से $\theta $ कोण से झुक जाता है, तब $\theta $ का मान सूत्र $\tan \theta = \frac{{rg}}{{{v^2}}}$ (जहाँ संकेतों के सामान्य अर्थ हैं) द्वारा प्राप्त किया जाता है। यह सूत्र

समीकरण, बल $ = \frac{X}{{{\rm{Density}}}}$ में भौतिक राशि $X$ की विमा है

एक स्तम्भ, जिसमें $\eta $ श्यानता गुणांक का श्यान द्रव भरा है, में से होकर एक स्टील की छोटी गेंद जिसकी त्रिज्या $r$ है, को गुरुत्वीय त्वरण के अधीन गिराया जाता है। कुछ समय पश्चात गेंद एक नियत मान ${v_T}$ जिसे सीमान्त मान कहते है, को प्राप्त कर लेती है। सीमान्त वेग ${\rm{(i)}}$गेंद के द्रव्यमान $m$ पर ${\rm{(ii)}}$ $\eta $ पर ${\rm{(iii)}}$ $r$ पर ${\rm{(iv)}}$ और गुरुत्वीय त्वरण $g$ पर निर्भर करता है। निम्न में से कौनसा सम्बन्ध विमीय रुप से सही है