Which of the following is dimensionally correct
Pressure = Energy per unit area
Pressure = Energy per unit volume
Pressure = Force per unit volume
Pressure = Momentum per unit volume per unit time
If momentum $[ P ]$, area $[ A ]$ and time $[ T ]$ are taken as fundamental quantities, then the dimensional formula for coefficient of viscosity is :
Consider the following equation of Bernouilli’s theorem. $P + \frac{1}{2}\rho {V^2} + \rho gh = K$ (constant)The dimensions of $K/P$ are same as that of which of the following
The volume of a liquid flowing out per second of a pipe of length $l$ and radius $r$ is written by a student as $V\, = \,\frac{{\pi p{r^4}}}{{8\eta l}}$ where $p$ is the pressure difference between the two ends of the pipe and $\eta $ is coefficent of viscosity of the liquid having dimensional formula $[M^1L^{-1}T^{-1}] $. Check whether the equation is dimensionally correct.
A massive black hole of mass $m$ and radius $R$ is spinning with angular velocity $\omega$. The power $P$ radiated by it as gravitational waves is given by $P=G c^{-5} m^{x} R^{y} \omega^{z}$, where $c$ and $G$ are speed of light in free space and the universal gravitational constant, respectively. Then,