14.Probability
easy

एक अनभिनत ( $unbiased$ ) सिक्का जिसके एक तल पर $1$ और दूसरे तल पर $6$ अंकित है तथा एक अनभिनत पासा दोनों को उछाला जाता है। प्रायिकता ज्ञात कीजिए कि प्रकट संख्याओं का योग $3$ है।

A

$\frac{1}{12}$

B

$\frac{1}{12}$

C

$\frac{1}{12}$

D

$\frac{1}{12}$

Solution

since the fair coin has $1$ marked on one face and $6$ on the other, and the die has six faces that are numbered $1,\,2,\,3\,,4,\,5,$ and $6,$ the sample space is given by

$S =\{(1,1),(1,2),(1,3),(1,4)$, $(1,5),(1,6),(6,1)$, $(6,2),(6,3),(6,4),(6,5),(6,6)\}$

Accordingly, $n ( S )=12$

Let $A$ be the event in which the sum of numbers that turn up is $3$.

Accordingly, $A=\{(1,2)\}$

$\therefore P(A)=\frac{\text { Number of outcomes favourable to } A}{\text { Total number of possible outcomes }}=\frac{n(A)}{n(S)}=\frac{1}{12}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.