- Home
- Standard 11
- Mathematics
एक अनभिनत ( $unbiased$ ) सिक्का जिसके एक तल पर $1$ और दूसरे तल पर $6$ अंकित है तथा एक अनभिनत पासा दोनों को उछाला जाता है। प्रायिकता ज्ञात कीजिए कि प्रकट संख्याओं का योग $3$ है।
$\frac{1}{12}$
$\frac{1}{12}$
$\frac{1}{12}$
$\frac{1}{12}$
Solution
since the fair coin has $1$ marked on one face and $6$ on the other, and the die has six faces that are numbered $1,\,2,\,3\,,4,\,5,$ and $6,$ the sample space is given by
$S =\{(1,1),(1,2),(1,3),(1,4)$, $(1,5),(1,6),(6,1)$, $(6,2),(6,3),(6,4),(6,5),(6,6)\}$
Accordingly, $n ( S )=12$
Let $A$ be the event in which the sum of numbers that turn up is $3$.
Accordingly, $A=\{(1,2)\}$
$\therefore P(A)=\frac{\text { Number of outcomes favourable to } A}{\text { Total number of possible outcomes }}=\frac{n(A)}{n(S)}=\frac{1}{12}$