10-2. Parabola, Ellipse, Hyperbola
medium

A focus of an ellipse is at the origin. The directrix is the line $x = 4$ and the eccentricity is $ \frac{1}{2}$ . Then the length of the semi-major axis is

A

$\frac{8}{3}$

B

$\frac{2}{3}$

C

$\frac{4}{3}$

D

$\frac{5}{3}$

(AIEEE-2008)

Solution

Obviously the major axis is along the $x$ -axis The distance between the focus and the

corresponding directrix $=\left|\frac{a}{e}-a e\right|=4$

$\left.\Rightarrow \frac{a}{e}-a e=4 \quad \text { (note that } \frac{a}{e}>a e\right)$

$\Rightarrow a\left(\frac{1}{e}-e\right)=4 \Rightarrow a\left(2-\frac{1}{2}\right)=4$

$\Rightarrow a \cdot \frac{3}{2}=4 \therefore a=\frac{8}{3}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.