- Home
- Standard 11
- Mathematics
If $PQ$ is a double ordinate of hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ such that $OPQ$ is an equilateral triangle, $O$ being the centre of the hyperbola. Then the eccentricity $e$ of the hyperbola satisfies
$1 < e < 2/\sqrt 3 $
$e = 2/\sqrt 3 $
$e = \sqrt 3 /2$
$e > 2/\sqrt 3 $
Solution

(d) Let $P$ $(a\sec \theta ,\,b\tan \theta );\,Q(a\sec \theta ,\, – b\tan \theta )$ be end points of double ordinates
and $C(0,\,0)$, is the centre of the hyperbola.
Now $PQ = 2b\,\tan \theta $
$CQ = CP = \sqrt {{a^2}{{\sec }^2}\theta + {b^2}{{\tan }^2}\theta } $
Since $CQ = CP = PQ$,
$\therefore \,4{b^2}{\tan ^2}\theta = {a^2}{\sec ^2}\theta + {b^2}{\tan ^2}\theta $
==> $3{b^2}{\tan ^2}\theta = {a^2}{\sec ^2}\theta $
==> $3{b^2}{\sin ^2}\theta = {a^2}$
==> $3{a^2}({e^2} – 1){\sin ^2}\theta = {a^2}$
==> $3({e^2} – 1){\sin ^2}\theta = 1$
==> $\frac{1}{{3({e^2} – 1)}} = {\sin ^2}\theta < 1$,
$ \Rightarrow $ $\frac{1}{{{e^2} – 1}} < 3$
$\Rightarrow \,\,{e^2} – 1 > \frac{1}{3}$
$ \Rightarrow \,\,{e^2} > \frac{4}{3}$
$ \Rightarrow \,e > \frac{2}{{\sqrt 3 }}$.