Gujarati
10-2. Parabola, Ellipse, Hyperbola
hard

If $PQ$ is a double ordinate of hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ such that $OPQ$ is an equilateral triangle, $O$ being the centre of the hyperbola. Then the eccentricity $e$ of the hyperbola satisfies

A

$1 < e < 2/\sqrt 3 $

B

$e = 2/\sqrt 3 $

C

$e = \sqrt 3 /2$

D

$e > 2/\sqrt 3 $

Solution

(d) Let $P$ $(a\sec \theta ,\,b\tan \theta );\,Q(a\sec \theta ,\, – b\tan \theta )$ be end points of double ordinates

and $C(0,\,0)$, is the centre of the hyperbola.

Now $PQ = 2b\,\tan \theta $

$CQ = CP = \sqrt {{a^2}{{\sec }^2}\theta + {b^2}{{\tan }^2}\theta } $

Since $CQ = CP = PQ$,

$\therefore \,4{b^2}{\tan ^2}\theta = {a^2}{\sec ^2}\theta + {b^2}{\tan ^2}\theta $

==> $3{b^2}{\tan ^2}\theta = {a^2}{\sec ^2}\theta $

==> $3{b^2}{\sin ^2}\theta = {a^2}$

==> $3{a^2}({e^2} – 1){\sin ^2}\theta = {a^2}$

==> $3({e^2} – 1){\sin ^2}\theta = 1$

==> $\frac{1}{{3({e^2} – 1)}} = {\sin ^2}\theta < 1$,

$ \Rightarrow $ $\frac{1}{{{e^2} – 1}} < 3$

$\Rightarrow \,\,{e^2} – 1 > \frac{1}{3}$

$ \Rightarrow \,\,{e^2} > \frac{4}{3}$

$ \Rightarrow \,e > \frac{2}{{\sqrt 3 }}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.