- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
hard
If the foci of the ellipse $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{{b^2}}} = 1$ and the hyperbola $\frac{{{x^2}}}{{144}} - \frac{{{y^2}}}{{81}} = \frac{1}{{25}}$ coincide, then the value of ${b^2}$ is
A
$1$
B
$5$
C
$7$
D
$9$
(AIEEE-2003)
Solution
(c) Hyperbola is $\frac{{{x^2}}}{{144}} – \frac{{{y^2}}}{{81}} = \frac{1}{{25}}$
$a = \sqrt {\frac{{144}}{{25}}} ,\,\,b = \sqrt {\frac{{81}}{{25}}} ,\,\,{e_1} = \sqrt {1 + \frac{{81}}{{144}}}$
$= \sqrt {\frac{{225}}{{144}}} = \frac{{15}}{{12}} = \frac{5}{4}$
Therefore, foci $ = (a{e_1},0) = \left( {\frac{{12}}{5}.\frac{5}{4},0} \right) = (3,\,0)$
Therefore, focus of ellipse $ = (4e,0)$ $i.e.$ $(3,\,0)$
==> $e = $$3\over4$
Hence ${b^2} = 16\left( {1 – \frac{9}{{16}}} \right) = 7$.
Standard 11
Mathematics